bald eagle
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 66)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
Brenda J. Hanley ◽  
André A. Dhondt ◽  
María J. Forzán ◽  
Elizabeth M. Bunting ◽  
Mark A. Pokras ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 422
Author(s):  
Meng Zhou ◽  
Yinyue Zhang ◽  
Jing Wang ◽  
Yuntao Shi ◽  
Vicenç Puig

This paper proposes a novel interval prediction method for effluent water quality indicators (including biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N)), which are key performance indices in the water quality monitoring and control of a wastewater treatment plant. Firstly, the effluent data regarding BOD/NH3-N and their necessary auxiliary variables are collected. After some basic data pre-processing techniques, the key indicators with high correlation degrees of BOD and NH3-N are analyzed and selected based on a gray correlation analysis algorithm. Next, an improved IBES-LSSVM algorithm is designed to predict the BOD/NH3-N effluent data of a wastewater treatment plant. This algorithm relies on an improved bald eagle search (IBES) optimization algorithm that is used to find the optimal parameters of least squares support vector machine (LSSVM). Then, an interval estimation method is used to analyze the uncertainty of the optimized LSSVM model. Finally, the experimental results demonstrate that the proposed approach can obtain high prediction accuracy, with reduced computational time and an easy calculation process, in predicting effluent water quality parameters compared with other existing algorithms.


2021 ◽  
Vol 25 (2) ◽  
pp. 50-56
Author(s):  
Ying Huang ◽  
◽  
Hao Jiang ◽  
Weixing Wang ◽  
Daozong Sun ◽  
...  

Soil electrical conductivity is one of the indispensable and important parameters in fine agriculture management, and a suitable soil electrical conductivity can promote good plant growth. Prediction model of soil electrical conductivity is constructed to effectively obtain the conductivity values of soil, which can provide a reference basis for irrigation and fertilization management and prediction evaluation in fine agriculture. Prediction model of soil electrical conductivity based on extreme learning machine (ELM) optimized by bald eagle search (BES) algorithm is proposed in this paper. In the prediction model, the input weights and bias values of the ELM network were optimized using the BES algorithm, and the performance of the model was evaluated with parameters such as mean square error (MSE), coefficient of determination (R^2). Also, the correlations of parameters such as soil temperature, moisture content, pH, and water potential in the soil conductivity prediction model were determined using the exploratory data analysis (EDA) and HeatMap heat map tools. Finally, the proposed model was compared with back propagation neural network (BP), radial basis function networks (RBF), support vector machine (SVM), gated recurrent neural network (GRNN), long short-term memory (LSTM), particle swarm algorithm (PSO) optimization ELM, genetic algorithm (GA) optimized ELM prediction model. The experimental results showed that MSE, R^2 of the proposed model are 4.09 and 0.941, which are better than the other models. Also the results verified the effectiveness of the proposed method, which is a feasible prediction method to guide the irrigation and fertilization management in fine agriculture, because of its good prediction effect on soil conductivity.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7479
Author(s):  
Manjunath Patel Gowdru Chandrashekarappa ◽  
Ganesh Ravi Chate ◽  
Vineeth Parashivamurthy ◽  
Balakrishnamurthy Sachin Kumar ◽  
Mohd Amaan Najeeb Bandukwala ◽  
...  

High impact polystyrene (HIPS) material is widely used for low-strength structural applications. To ensure proper function, dimensional accuracy and porosity are at the forefront of industrial relevance. The dimensional accuracy cylindricity error (CE) and porosity of printed parts are influenced mainly by the control variables (layer thickness, shell thickness, infill density, print speed of the fused deposition modeling (FDM) process). In this study, a central composite design (CCD) matrix was used to perform experiments and analyze the complete insight information of the process (control variables influence on CE and porosity of FDM parts). Shell thickness for CE and infill density for porosity were identified as the most significant factors. Layer thickness interaction with shell thickness, infill density (except for CE), and print speed were found to be significant for both outputs. The interaction factors, i.e., shell thickness and infill density, were insignificant (negligible effect) for both outputs. The models developed produced a better fit for regression with an R2 equal to 94.56% for CE, and 99.10% for porosity, respectively. Four algorithms (bald eagle search optimization (BES), particle swarm optimization (PSO), RAO-3, and JAYA) were applied to determine optimal FDM conditions while examining six case studies (sets of weights assigned for porosity and CE) focused on minimizing both CE and porosity. BES and RAO-3 algorithms determined optimal conditions (layer thickness: 0.22 mm; shell thickness: 2 mm; infill density: 100%; print speed: 30 mm/s) at a reduced computation time equal to 0.007 s, differing from JAYA and PSO, which resulted in an experimental CE of 0.1215 mm and 2.5% of porosity in printed parts. Consequently, BES and RAO-3 algorithms are efficient tools for the optimization of FDM parts.


Author(s):  
Christine Brasic ◽  
Latimer Harris-Ward ◽  
Fabio A. Milner ◽  
Carlos Bustamante-Orellana ◽  
Jordy Cevallos-Chavez ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 12969
Author(s):  
Alaa A. Zaky ◽  
Ahmed Fathy ◽  
Hegazy Rezk ◽  
Konstantina Gkini ◽  
Polycarpos Falaras ◽  
...  

Recently, perovskite solar cells (PSCs) have been widely investigated as an efficient alternative for silicon solar cells. In this work, a proposed modified triple-diode model (MTDM) for PSCs modeling and simulation was used. The Bald Eagle Search (BES) algorithm, which is a novel nature-inspired search optimizer, was suggested for solving the model and estimating the PSCs device parameters because of the complex nature of determining the model parameters. Two PSC architectures, namely control and modified devices, were experimentally fabricated, characterized and tested in the lab. The I–V datasets of the fabricated devices were recorded at standard conditions. The decision variables in the proposed optimization process are the nine and ten unknown parameters of triple-diode model (TDM) and MTDM, respectively. The direct comparison with a number of modern optimization techniques including grey wolf (GWO), particle swarm (PSO) and moth flame (MFO) optimizers, as well as sine cosine (SCA) and slap swarm (SSA) algorithms, confirmed the superiority of the proposed BES approach, where the Root Mean Square Error (RMSE) objective function between the experimental data and estimated characteristics achieves the least value.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Venugopal Boppana ◽  
P. Sandhya

AbstractRecommendation systems are obtaining more attention in various application fields especially e-commerce, social networks and tourism etc. The top items are recommended based on the ability of recommender system which predict the future preference out of the available items. Because of the internet, the people in the current society has too many options that’s why the recommendation system is very essential. The recommendation is achieved by the particular users who predict the ratings for numerous items and recommend those items to other users. Majorly, content and collaborative filtering techniques are employed in typical recommendation systems to find user preferences and provide final recommendations. But, these systems commonly lacks to take growing user preferences in various contextual factors. Context aware recommendation systems consider various contextual parameters into account and attempt to catch user preferences appropriately. The majority of the work in the recommender system domain focuses on increasing the recommendation accuracy by employing several proposed approaches where the main motive remains to maximize the accuracy of recommendations while ignoring other design objectives, such as a user’s an item’s context. Therefore, in this paper an effective deep learning based context aware recommendation model is proposed which can be act as an efficient recommender system by showing minimum error during recommendation. Initially, the dataset is pre-processed using Natural Language Tool Kit (NLTK) in Python platform. After pre-processing, the TF–IDF and word embedding model is used for every pre-processed reviews to extract the features and contextual information. The extracted feature is considered as an input of density based clustering to group the negative, neutral and positive sentiments of user reviews. Finally, deep recurrent neural Network (DRNN) is employed to get the most preferable user from every cluster. The recurrent neural network model parameter values are initialized through the fitness computation of Bald Eagle Search (BES) algorithm. The proposed model is implemented using NYC Restaurant Rich Dataset using Python programming platform and performance is evaluated based on the metrics of accuracy, precision, recall and compared with existing models. The proposed recommendation model achieves 99.6% accuracy which is comparatively higher than other machine learning models.


2021 ◽  
pp. 50-54
Author(s):  
W. Grainger Hunt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document