Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

2018 ◽  
Vol 39 (6) ◽  
pp. 521-534 ◽  
Author(s):  
S. Chai ◽  
S. Lim ◽  
C.-Y. Kim ◽  
S. Hong
2021 ◽  
Vol 2 ◽  
Author(s):  
Jack Haines ◽  
Marco Gandolfi ◽  
Yohann Franz ◽  
Costantino De Angelis ◽  
Massimiliano Guasoni

We investigate theoretically mid-infrared (MIR) generation via difference frequency generation in multimode AlGaAs-on insulator (AlGaAs-OI) waveguides. The large refractive index difference between the AlGaAs core and the silica cladding shrinks the modes size down to the sub-μm2 scale, and, together with AlGaAs strong second-order nonlinear polarization, empowers strong nonlinear effects. As a result, efficient MIR generation is obtained in few-cm long waveguides with sub-μm2 transverse section, where higher order modes are exploited to achieve the phase-matching condition. These observations suggest that multimode AlGaAs-OI waveguides could represent a novel promising platform for on-chip, compact MIR sources.


2018 ◽  
Vol 1015 ◽  
pp. 022019
Author(s):  
A V Sokolovskiy ◽  
D D Dmitriev ◽  
E A Veisov ◽  
A B Gladyshev

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
San-Fu Wang

This paper presents a 5 V-to-3.3 V linear regulator circuit, which uses 3.3 V CMOS transistors to replace the 5 V CMOS transistors. Thus, the complexity of the manufacturing semiconductor process can be improved. The proposed linear regulator is implemented by cascode architecture, which requires three different reference voltages as the bias voltages of its circuit. Thus, the three-output temperature-independent reference voltage circuit is proposed, which provides three accurate reference voltages simultaneously. The three-output temperature-independent reference voltages also can be used in other circuits of the chip. By using the proposed temperature-independent reference voltages, the proposed linear regulator can provide an accurate output voltage, and it is suitable for low cost, small size, and highly integrated system-on-chip (SoC) applications. Moreover, the proposed linear regulator uses the cascode technique, which improves both the gain performance and the isolation performance. Therefore, the proposed linear regulator has a good performance in reference voltage to output voltage isolation. The voltage variation of the linear regulator is less than 2.153% in the temperature range of −40°C–120°C, and the power supply rejection ratio (PSRR) is less than −42.8 dB at 60 Hz. The regulator can support 0~200 mA output current. The core area is less than 0.16 mm2.


2014 ◽  
Vol 105 (13) ◽  
pp. 133703 ◽  
Author(s):  
H. J. Tang ◽  
S. Kaur ◽  
L. Fu ◽  
B. M. Yao ◽  
X. Li ◽  
...  

2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document