refractive index difference
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2 ◽  
Author(s):  
Jack Haines ◽  
Marco Gandolfi ◽  
Yohann Franz ◽  
Costantino De Angelis ◽  
Massimiliano Guasoni

We investigate theoretically mid-infrared (MIR) generation via difference frequency generation in multimode AlGaAs-on insulator (AlGaAs-OI) waveguides. The large refractive index difference between the AlGaAs core and the silica cladding shrinks the modes size down to the sub-μm2 scale, and, together with AlGaAs strong second-order nonlinear polarization, empowers strong nonlinear effects. As a result, efficient MIR generation is obtained in few-cm long waveguides with sub-μm2 transverse section, where higher order modes are exploited to achieve the phase-matching condition. These observations suggest that multimode AlGaAs-OI waveguides could represent a novel promising platform for on-chip, compact MIR sources.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6600
Author(s):  
Chenming Zhao ◽  
Lei Xu ◽  
Liying Liu

We report a novel Mach−Zehnder interferometer (MZI) sensor that utilizes a weak one-dimensional field confinement silica waveguide (WCSW). The WCSW has a large horizontal and vertical aspect ratio and low refractive index difference, which features easy preparation and a large evanescent field for achieving high waveguide sensitivity. We experimentally achieved WCSW ultrahigh waveguide sensitivity of 0.94, MZI sensitivity of 44,364 π/RIU and a low limit of detection (LOD) of 6.1 × 10−7 RIU.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Yu Zheng ◽  
Hao He ◽  
Lianqiong Jiang ◽  
Ji’an Duan

Efficient coupling of micro/nano-optical waveguides with single-mode fibers is the premise for the efficient operation of the integrated photonic chip, which directly determines its optical performance. In this paper, the design principles of periodically segmented waveguide (PSW) structure used for high-efficiency fiber-chip coupling are proposed, and the effects of refractive index difference Δ on coupling efficiency and structural parameters are studied by simulation. It is found that as the Δ of the PSW increases, the period of the PSW tends to be smaller, and the coupling efficiency decreases continuously, reduced by around 0.673 dB in the range of Δ = 3% to Δ = 7%. Through the analysis of PSW optical mechanisms, it demonstrates that the main reason for the decrease of coupling efficiency is that the transmission loss of the tapered section increases sharply with the increase of Δ. High-Δ PSW is difficult to apply to highly integrated silica optical chips due to the unignorably insertion loss.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5253
Author(s):  
Dongjun Seo ◽  
Chang-Soo Park ◽  
Young Min Song

In this paper, we introduce a disk-shaped Ge-on-Si photodetector for refractive-index difference sensing at an operating wavelength of 1550 nm. For the implementation of a small-scale sensor, a Ge layer was formed on top of a Si layer to increase the absorption coefficient at the expense of the light-detection area. Additionally, the sensor had a ring waveguide structure along the edge of the disk formed by a recess into the inner part of the disk. This increased the interaction between the dominant optical mode traveling along the edge waveguide and the refractive index of the cladding material to be sensed, and conclusively increased detection sensitivity. The simulation results show that the proposed sensor exhibited a detection sensitivity of >50 nm/RIU (Refractive Index Unit), a quality factor of approximately 3000, and a minimum detectable refractive index change of 0.95 × 10−2 RIU with a small disk radius of 3 μm. This corresponds to 1.67 times the sensitivity without a recess (>30 nm/RIU).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Haythem Bany Salameh ◽  
Hazem Khrais

AbstractIn this paper, we develop a novel demultiplexer design for Coarse Wavelength Division Multiplexer (CWDM). The device consists of multi-layer inhomogeneous semi-conductor material, where the refractive index of each layer is graded according to a predefined profile. The proposed design exploits the ray’s spatial shift that results from the material dispersion as different wavelengths propagate through the different layers of the device. Our design forces the multiplexed light to refract after propagation for short distance within the device leading to smaller device size while providing the needed spatial shift between the ray’s of the adjacent multiplexed wavelengths. The proposed structure can be easily implemented using the well-established technology utilized in fabricating existing graded-index fibers. The impacts of the various design parameters (such as the incident angle, number of layers, the layer thickness, the spacing between adjacent wavelengths, the refractive index difference) on the amount of achieved spatial shift between the adjacent wavelengths and the size of the device are investigated. Compared to previous proposed techniques, our device can be easily fabricated to provide higher spatial shift while reducing the device size with by controlling the different design parameters.


Sign in / Sign up

Export Citation Format

Share Document