Power-Law Expansion and Scalar Field Cosmology in Higher Derivative Theory

2012 ◽  
Vol 51 (6) ◽  
pp. 1889-1900 ◽  
Author(s):  
C. P. Singh ◽  
Vijay Singh
2011 ◽  
Vol 334 (1) ◽  
pp. 187-191 ◽  
Author(s):  
N. Ibotombi Singh ◽  
S. Surendra Singh ◽  
S. Romaleima Devi

2000 ◽  
Vol 17 (8) ◽  
pp. 1783-1814 ◽  
Author(s):  
E Gunzig ◽  
V Faraoni ◽  
A Figueiredo ◽  
T M Rocha Filho ◽  
L Brenig

2007 ◽  
Vol 76 (8) ◽  
Author(s):  
W. Guzmán ◽  
M. Sabido ◽  
J. Socorro

2019 ◽  
Vol 28 (01) ◽  
pp. 1950022 ◽  
Author(s):  
Yousef Bisabr

We consider a generalized Brans–Dicke model in which the scalar field has a self-interacting potential function. The scalar field is also allowed to couple nonminimally with the matter part. We assume that it has a chameleon behavior in the sense that it acquires a density-dependent effective mass. We consider two different types of matter systems which couple with the chameleon, dust and vacuum. In the first case, we find a set of exact solutions when the potential has an exponential form. In the second case, we find a power-law exact solution for the scale factor. In this case, we will show that the vacuum density decays during expansion due to coupling with the chameleon.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
N. Dimakis ◽  
T. Pailas ◽  
A. Paliathanasis ◽  
G. Leon ◽  
Petros A. Terzis ◽  
...  

AbstractWe present, for the first time, the quantization process for the Einstein-aether scalar field cosmology. We consider a cosmological theory proposed as a Lorentz violating inflationary model, where the aether and scalar fields interact through the assumption that the aether action constants are ultra-local functions of the scalar field. For this specific theory there is a valid minisuperspace description which we use to quantize. For a particular relation between the two free functions entering the reduced Lagrangian the solution to the Wheeler–DeWitt equation as also the generic classical solution are presented for any given arbitrary potential function.


2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850115 ◽  
Author(s):  
M. Zubair ◽  
Farzana Kousar ◽  
Saira Waheed

In this paper, we will discuss cosmological models using Bianchi type I for anisotropic fluid in [Formula: see text] theory of gravity which involves scalar potential. For this purpose, we consider power law assumptions of coupling function and scalar field along with the proportionality condition of expansion and shear scalars. We choose two [Formula: see text] models and obtain exact solutions of field equations in both cases. For these constructed models, the behavior of different physical quantities like EoS parameter, self-interacting potential as well as deceleration and skewness parameters are explored and illustrated graphically for the feasible ranges of free parameters. It is concluded that anisotropic fluid approaches isotropy in later cosmic times for both models.


Sign in / Sign up

Export Citation Format

Share Document