Neutrino Mass Hierarchy and CP Violation in Long Baseline Neutrino Experiment

2013 ◽  
Vol 53 (3) ◽  
pp. 727-733
Author(s):  
Bipin Singh Koranga
2008 ◽  
Vol 23 (21) ◽  
pp. 3388-3394
Author(s):  
HISAKAZU MINAKATA

I discuss why and how powerful is the two-detector setting in neutrino oscillation experiments. I cover three concrete examples: (1) reactor θ13 experiments, (2) T2KK, Tokai-to-Kamioka-Korea two-detector complex for measuring CP violation, determining the neutrino mass hierarchy, and resolving the eight-fold parameter degeneracy, (3) two-detector setting in a neutrino factory at baselines 3000 km and 7000 km for detecting effects of non-standard interactions (NSI) of neutrinos.


2007 ◽  
Vol 16 (05) ◽  
pp. 1313-1329
Author(s):  
HISAKAZU MINAKATA

I discuss some aspects of future prospects of the experimental exploration of the unknowns in the neutrino mass pattern and the lepton flavor mixing. I start from measuring θ13 by reactors and accelerators as a prerequisite for proceeding to search for leptonic CP violation. I then discuss how CP violation can be uncovered, and how the neutrino mass hierarchy can be determined. I do these by resolving so called the "parameter degeneracy" which is required anyway if one wants to seek precision measurement of the lepton mixing parameters. As a concrete setting for resolving the degeneracy I use the Tokai-to-Kamioka-Korea two detector complex which receives neutrino superbeam from J-PARC, which is sometimes called as "T2KK". It is shown that T2KK is able to resolve all the eight-fold parameter degeneracy in a wide range of the lepton mixing parameters. Some alternative ways of measuring the unknowns are also briefly mentioned.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Dean Karlen ◽  
on behalf of the TtwoK Collaboration

The T2K long baseline neutrino oscillation experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and anti-neutrino beams. This presentation reports on the analysis of our data from an exposure of 2 . 6 × 10 21 protons on target. Results for oscillation parameters, including the CP violation parameter and neutrino mass ordering, are shown.


2014 ◽  
Vol 2014 (5) ◽  
Author(s):  
S.K. Agarwalla ◽  
◽  
L. Agostino ◽  
M. Aittola ◽  
A. Alekou ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. Andringa ◽  
E. Arushanova ◽  
S. Asahi ◽  
M. Askins ◽  
D. J. Auty ◽  
...  

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.


2016 ◽  
Vol 25 (4) ◽  
pp. 291
Author(s):  
Vo Van Vien ◽  
Hoang Ngoc Long ◽  
Phan Ngoc Thu

We show that the neutrino mass matrix of the Zee-Babu model isable to fit the recent data on neutrino masses and mixingwith non-zero $\theta_{13}$ in the inverted neutrino mass hierarchy. The results show that the Majorana  phases are equal to zero and the Dirac phase ($\de$) ispredicted to either $0$ or $\pi$, i. e, there is no CP violation in the Zee-Babu model at the two loop level. The effective mass governingneutrinoless double beta decay and the sum of neutrino masses areconsistent with the recent analysis.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sandhya Choubey ◽  
Dipyaman Pramanik

Abstract In presence of non standard interactions (NSI), the solar neutrino data is consistent with two solutions, one close to the standard LMA solution with sin2θ12 ≃ 0.31 and another with $$ {\sin}^2{\theta}_{12}^D\simeq 0.69\left(=1-{\sin}^2{\theta}_{12}\right) $$ sin 2 θ 12 D ≃ 0.69 = 1 − sin 2 θ 12 . The latter has been called the Dark LMA (DLMA) solution in the literature and essentially brings an octant degeneracy in the measurement of the mixing angle θ12. This θ12 octant degeneracy is hard to resolve via oscillations because of the existence of the so-called “generalised mass hierarchy degeneracy” of the neutrino mass matrix in presence of NSI. One might think that if the mass hierarchy is independently determined in a non-oscillation experiment such as neutrino-less double beta decay, one might be able to break the θ12 octant degeneracy. In this paper we study this in detail in the context of long-baseline experiments (Pμμ channel) as well as reactor experiments (Pee channel) and show that if we combine information from both long-baseline and reactor experiments we can find the correct octant and hence value of θ12. We elaborate the reasons for it and study the prospects of determining the θ12 octant using T2HK, DUNE and JUNO experiments. Of course, one would need information on the neutrino mass hierarchy as well.


Sign in / Sign up

Export Citation Format

Share Document