New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System

2017 ◽  
Vol 56 (4) ◽  
pp. 1274-1285 ◽  
Author(s):  
Manu Pratap Singh ◽  
Balwant S. Rajput
2020 ◽  
Vol 2 (3) ◽  
pp. 352-377
Author(s):  
Efrén Honrubia ◽  
Ángel S. Sanz

Quantum teleportation plays a key role in modern quantum technologies. Thus, it is of much interest to generate alternative approaches or representations that are aimed at allowing us a better understanding of the physics involved in the process from different perspectives. With this purpose, here an approach based on graph theory is introduced and discussed in the context of some applications. Its main goal is to provide a fully symbolic framework for quantum teleportation from a dynamical viewpoint, which makes explicit at each stage of the process how entanglement and information swap among the qubits involved in it. In order to construct this dynamical perspective, it has been necessary to define some auxiliary elements, namely virtual nodes and edges, as well as an additional notation for nodes describing potential states (against nodes accounting for actual states). With these elements, not only the flow of the process can be followed step by step, but they also allow us to establish a direct correspondence between this graph-based approach and the usual state vector description. To show the suitability and versatility of this graph-based approach, several particular teleportation examples are examined in detail, which include bipartite, tripartite, and tetrapartite maximally entangled states as quantum channels. From the analysis of these cases, a general protocol is devised to describe the sharing of quantum information in presence of maximally entangled multi-qubit system.


2021 ◽  
Vol 36 (03) ◽  
pp. 2150010
Author(s):  
Mostafa Mansour ◽  
Saeed Haddadi

In this work, we investigate the bipartite entanglement of decohered mixed states generated from maximally entangled cluster states of [Formula: see text] qubits physical system. We introduce the disconnected cluster states for an ensemble of [Formula: see text] non-interacting qubits and we give the corresponding separable density matrices. The maximally entangled states can be generated from disconnected cluster states, by assuming that the dynamics of the multi-qubit system is governed by a quadratic Hamiltonian of Ising type. When exposed to a local noisy interaction with the environment, the multi-qubit system evolves from its initial pure maximally entangled state to a decohered mixed state. The decohered mixed states generated from bipartite, tripartite and multipartite maximally entangled cluster states are explicitly expressed and their bipartite entanglements are investigated.


Author(s):  
Xing-Yan Fan ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Chunfeng Wu ◽  
Arun Kumar Pati ◽  
...  

The [Formula: see text]-qubit Greenberger–Horne–Zeilinger (GHZ) states are the maximally entangled states of [Formula: see text] qubits, which have had many important applications in quantum information processing, such as quantum key distribution and quantum secret sharing. Thus how to distinguish the GHZ states from other quantum states becomes a significant problem. In this work, by presenting a family of the generalized Clauser–Horne–Shimony–Holt (CHSH) inequality, we show that the [Formula: see text]-qubit GHZ states can be indeed identified by the maximal violations of the generalized CHSH inequality under some specific measurement settings. The generalized CHSH inequality is simple and contains only four correlation functions for any [Formula: see text]-qubit system, thus has the merit of facilitating experimental verification. Furthermore, we present a quantum phenomenon of robust violations of the generalized CHSH inequality in which the maximal violation of Bell’s inequality can be robust under some specific noises adding to the [Formula: see text]-qubit GHZ states.


2009 ◽  
Vol 282 (7) ◽  
pp. 1482-1487 ◽  
Author(s):  
M. Yang ◽  
A. Delgado ◽  
L. Roa ◽  
C. Saavedra

2014 ◽  
Vol 90 (15) ◽  
Author(s):  
Clemens Meyer zu Rheda ◽  
Géraldine Haack ◽  
Alessandro Romito

2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Nicolai Friis ◽  
Oliver Marty ◽  
Christine Maier ◽  
Cornelius Hempel ◽  
Milan Holzäpfel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document