In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level

2017 ◽  
Vol 31 (10) ◽  
pp. 877-889 ◽  
Author(s):  
Insun Park ◽  
Yu Jin Hwang ◽  
TaeHun Kim ◽  
Ambily Nath Indu Viswanath ◽  
Ashwini M. Londhe ◽  
...  
2020 ◽  
Vol 23 (2) ◽  
pp. 126-140 ◽  
Author(s):  
Christophe Tratrat

Aims and Objective: The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. Materials and Methods: The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. Results: PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. Conclusion: Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.


2017 ◽  
Vol 15 (8) ◽  
pp. 1828-1841 ◽  
Author(s):  
Viktória Hajzer ◽  
Roman Fišera ◽  
Attila Latika ◽  
Július Durmis ◽  
Jakub Kollár ◽  
...  

Three diastereoisomers of oseltamivir were synthesized, their properties predicted by quantum-chemical calculations and their antiviral activities evaluated.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mohammed Elbastawesy ◽  
Martha Morcoss ◽  
Mostafa H. Abdelrahman ◽  
Bahaa Youssif ◽  
Alaa Hayallah

2018 ◽  
Vol 44 (10) ◽  
pp. 6119-6136 ◽  
Author(s):  
Asha V. Chate ◽  
Ravindra M. Dongre ◽  
Mahadeo K. Khaire ◽  
Giribala M. Bondle ◽  
Jaiprakash N. Sangshetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document