Multi-objective-optimization-based approach to improve the electrical efficiency for organic solar cells

2012 ◽  
Vol 11 (4) ◽  
pp. 336-343 ◽  
Author(s):  
A. Maoucha ◽  
F. Djeffal
2020 ◽  
Vol 13 (1) ◽  
pp. 317-317
Author(s):  
Rui Sun ◽  
Jie Guo ◽  
Qiang Wu ◽  
Zhuohan Zhang ◽  
Wenyan Yang ◽  
...  

Correction for ‘A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance’ by Rui Sun et al., Energy Environ. Sci., 2019, 12, 3118–3132.


2019 ◽  
Vol 12 (10) ◽  
pp. 3118-3132 ◽  
Author(s):  
Rui Sun ◽  
Jie Guo ◽  
Qiang Wu ◽  
Zhuohan Zhang ◽  
Wenyan Yang ◽  
...  

This article analyzes and discusses a multi-objective optimization-based layer-by-layer blade-coating approach, which provides a new technology choice for large-scale manufacturing of organic solar cells.


2021 ◽  
Author(s):  
Varun Ojha ◽  
Giorgio Jansen ◽  
Andrea Patanè ◽  
Antonino La Magna ◽  
Vittorio Romano ◽  
...  

AbstractWe propose a two-stage multi-objective optimization framework for full scheme solar cell structure design and characterization, cost minimization and quantum efficiency maximization. We evaluated structures of 15 different cell designs simulated by varying material types and photodiode doping strategies. At first, non-dominated sorting genetic algorithm II (NSGA-II) produced Pareto-optimal-solutions sets for respective cell designs. Then, on investigating quantum efficiencies of all cell designs produced by NSGA-II, we applied a new multi-objective optimization algorithm II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell designs and reduced their fabrication costs. We observed that the cell design comprising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) layer and rough silver back reflector (BR) offered a quantum efficiency ($$Q_e$$ Q e ) of 0.6031. Overall, this paper provides a full characterization of cell structure designs. It derives relationship between quantum efficiency, $$Q_e$$ Q e of a cell with its TCO layer’s doping methods and TCO and BR layer’s material types. Our solar cells design characterization enables us to perform a cost-benefit analysis of solar cells usage in real-world applications.


2017 ◽  
Vol 62 ◽  
pp. 373-383 ◽  
Author(s):  
Andrea Patanè ◽  
Andrea Santoro ◽  
Piero Conca ◽  
Giovanni Carapezza ◽  
Antonino La Magna ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Giovanni Aiello ◽  
Salvatore Alfonzetti ◽  
Santi Rizzo ◽  
Nunzio Salerno

Informatica ◽  
2015 ◽  
Vol 26 (1) ◽  
pp. 33-50 ◽  
Author(s):  
Ernestas Filatovas ◽  
Olga Kurasova ◽  
Karthik Sindhya

Sign in / Sign up

Export Citation Format

Share Document