A dual-channel network design model in a green supply chain considering pricing and transportation mode choice

2016 ◽  
Vol 29 (7) ◽  
pp. 1465-1483 ◽  
Author(s):  
Farnaz Barzinpour ◽  
Peyman Taki
2021 ◽  
pp. 130062
Author(s):  
Yigit Kazançoglu ◽  
Damla Yuksel ◽  
Muruvvet Deniz Sezer ◽  
Sachin Kumar Mangla ◽  
Lianlian Hua

2019 ◽  
Vol 11 (21) ◽  
pp. 5928
Author(s):  
Ruozhen Qiu ◽  
Shunpeng Shi ◽  
Yue Sun

The problem of designing a multi-product, multi-period green supply chain network under uncertainties in carbon price and customer demand is studied in this paper. The purpose of this study is to develop a robust green supply chain network design model to minimize the total cost and to effectively cope with uncertainties. A scenario tree method is applied to model the uncertainty, and a green supply chain network design model is developed under the p-robustness criterion. Furthermore, the solution method for determining the lower and upper bounds of the relative regret limit is introduced, which is convenient for decision-makers to choose the corresponding supply chain network structure through the tradeoff between risk and cost performance. In particular, to overcome the large scale of the model caused by a high number of uncertain scenarios and reduce the computational difficulty, a scenario reduction technique is applied to filter the scenarios. Numerical calculations are executed to analyze the influence of relevant parameters on the performance of the designed green supply chain network. The results show that the proposed p-robust green supply chain network design model can effectively deal with carbon and demand uncertainties while ensuring cost performance, and can offer more choices for decision-makers with different risk preferences.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 549 ◽  
Author(s):  
Zilong Song ◽  
Shiwei He ◽  
Baifeng An

This paper investigated, for the first time, the game and coordination of a dual-channel, three-layered, green fresh produce supply chain, with regard to its economic, social, and environmental performance. Considering that the market demand is dual-channel priced and sensitive to the degree of greenness and the freshness-level, four game models, under different scenarios have been established. These included a centralized scenario, a decentralized scenario, and two contractual scenarios. The equilibrium solutions under the four scenarios were characterized. From the perspective of a sustainable development, the economic, social, and environmental performance of the supply chain was analyzed. To enhance the supply chain performance, two contract mechanisms were designed and the conditions for a multi-win outcome were obtained. Accordingly, many propositions and management implications were provided. The results showed that, (1) compared to the centralized supply chain case, the performance of the decentralized supply chain case is inferior; (2) in addition to increasing the concentration of the supply chain decisions, the two contracts proposed can effectively coordinate the green supply chain and improve its sustainable performance; and (3) the performance of the supply chain is positively driven by the consumers’ sensitivity to greenness degree and the freshness level of fresh produce. This paper fills a research gap and helps the participants of the channel recognize the operational decision principle of a complex green supply chain, in order to achieve a higher and a long-term sustainable-development performance.


Author(s):  
Peng Li ◽  
Di Wu

The rapid development of e-commerce technologies has encouraged collection centers to adopt online recycling channels in addition to their existing traditional (offline) recycling channels, such the idea of coexisting traditional and online recycling channels evolved a new concept of a dual-channel reverse supply chain (DRSC). The adoption of DRSC will make the system lose stability and fall into the trap of complexity. Further the consumer-related factors, such as consumer preference, service level, have also severely affected the system efficiency of DRSC. Therefore, it is necessary to help DRSCs to design their networks for maintaining competitiveness and profitability. This paper focuses on the issues of quantitative modelling for the network design of a general multi-echelon, dual-objective DRSC system. By incorporating consumer preference for the online recycling channel into the system, we investigate a mixed integer linear programming (MILP) model to design the DRSC network with uncertainty and the model is solved using the ε-constraint method to derive optimal Pareto solutions. Numerical results show that there exist positive correlations between consumer preference and total collective quantity, online recycling price and the system profits. The proposed model and solution method could assist recyclers in pricing and service decisions to achieve a balance solution for economic and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document