scholarly journals Field-synchronized Digital Twin framework for production scheduling with uncertainty

Author(s):  
Elisa Negri ◽  
Vibhor Pandhare ◽  
Laura Cattaneo ◽  
Jaskaran Singh ◽  
Marco Macchi ◽  
...  

Abstract Research on scheduling problems is an evergreen challenge for industrial engineers. The growth of digital technologies opens the possibility to collect and analyze great amount of field data in real-time, representing a precious opportunity for an improved scheduling activity. Thus, scheduling under uncertain scenarios may benefit from the possibility to grasp the current operating conditions of the industrial equipment in real-time and take them into account when elaborating the best production schedules. To this end, the article proposes a proof-of-concept of a simheuristics framework for robust scheduling applied to a Flow Shop Scheduling Problem. The framework is composed of genetic algorithms for schedule optimization and discrete event simulation and is synchronized with the field through a Digital Twin (DT) that employs an Equipment Prognostics and Health Management (EPHM) module. The contribution of the EPHM module inside the DT-based framework is the real time computation of the failure probability of the equipment, with data-driven statistical models that take sensor data from the field as input. The viability of the framework is demonstrated in a flow shop application in a laboratory environment.

2014 ◽  
Vol 670-671 ◽  
pp. 1434-1438
Author(s):  
Jian Feng Zhao ◽  
Xiao Chun Zhu ◽  
Bao Sheng Wang

The n-job, k-stage hybrid flow shop problem is one of the general production scheduling problems. Hybrid flow shop (HFS) problems are NP-Hard when the objective is to minimize the makespan .The research deals with the criterion of makespan minimization for the HFS scheduling problems. In this paper we present a new encoding method so as to guarantee the validity of chromosomes and convenience of calculation and corresponding crossover and mutation operators are designed for optimum sequencing. The simulation results show that the Sequence Adaptive Cross Genetic Algorithm (SACGA) is an effective and efficient method for solving HFS Problems.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1131
Author(s):  
Anita Agárdi ◽  
Károly Nehéz ◽  
Olivér Hornyák ◽  
László T. Kóczy

This paper deals with the flow shop scheduling problem. To find the optimal solution is an NP-hard problem. The paper reviews some algorithms from the literature and applies a benchmark dataset to evaluate their efficiency. In this research work, the discrete bacterial memetic evolutionary algorithm (DBMEA) as a global searcher was investigated. The proposed algorithm improves the local search by applying the simulated annealing algorithm (SA). This paper presents the experimental results of solving the no-idle flow shop scheduling problem. To compare the proposed algorithm with other researchers’ work, a benchmark problem set was used. The calculated makespan times were compared against the best-known solutions in the literature. The proposed hybrid algorithm has provided better results than methods using genetic algorithm variants, thus it is a major improvement for the memetic algorithm family solving production scheduling problems.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-12
Author(s):  
Cecilia E. Nugraheni ◽  
Luciana Abednego ◽  
Maria Widyarini

The apparel industry is a class of textile industry. Generally, the production scheduling problem in the apparel industry belongs to Flow Shop Scheduling Problems (FSSP). There are many algorithms/techniques/heuristics for solving FSSP. Two of them are the Palmer Algorithm and the Gupta Algorithm. Hyper-heuristic is a class of heuristics that enables to combine of some heuristics to produce a new heuristic. GPHH is a hyper-heuristic that is based on genetic programming that is proposed to solve FSSP [1]. This paper presents the development of a computer program that implements the GPHH. Some experiments have been conducted for measuring the performance of GPHH. From the experimental results, GPHH has shown a better performance than the Palmer Algorithm and Gupta Algorithm.


2013 ◽  
Vol 651 ◽  
pp. 548-552
Author(s):  
Parinya Kaweegitbundit

This paper considers two stage hybrid flow shop (HFS) with identical parallel machine. The objectives is to determine makespan have been minimized. This paper presented memetic algorithm procedure to solve two stage HFS problems. To evaluated performance of propose method, the results have been compared with two meta-heuristic, genetic algorithm, simulated annealing. The experimental results show that propose method is more effective and efficient than genetic algorithm and simulated annealing to solve two stage HFS scheduling problems.


4OR ◽  
2006 ◽  
Vol 4 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Jean-Louis Bouquard ◽  
Christophe Lenté

Sign in / Sign up

Export Citation Format

Share Document