A real-time defective pixel detection system for LCDs using deep learning based object detectors

Author(s):  
Aslı Çelik ◽  
Ayhan Küçükmanisa ◽  
Aydın Sümer ◽  
Aysun Taşyapı Çelebi ◽  
Oğuzhan Urhan
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 89278-89291 ◽  
Author(s):  
Jing Yang ◽  
Shaobo Li ◽  
Zheng Wang ◽  
Guanci Yang

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0245259
Author(s):  
Fufeng Qiao

A DCNN-LSTM (Deep Convolutional Neural Network-Long Short Term Memory) model is proposed to recognize and track table tennis’s real-time trajectory in complex environments, aiming to help the audiences understand competition details and provide a reference for training enthusiasts using computers. Real-time motion features are extracted via deep reinforcement networks. DCNN tracks the recognized objects, and the LSTM algorithm predicts the ball’s trajectory. The model is tested on a self-built video dataset and existing systems and compared with other algorithms to verify its effectiveness. Finally, an overall tactical detection system is built to measure ball rotation and predict ball trajectory. Results demonstrate that in feature extraction, the Deep Deterministic Policy Gradient (DDPG) algorithm has the best performance, with a maximum accuracy rate of 89% and a minimum mean square error of 0.2475. The accuracy of target tracking effect and trajectory prediction is as high as 90%. Compared with traditional methods, the performance of the DCNN-LSTM model based on deep learning is improved by 23.17%. The implemented automatic detection system of table tennis tactical indicators can deal with the problems of table tennis tracking and rotation measurement. It can provide a theoretical foundation and practical value for related research in real-time dynamic detection of balls.


2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve the information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time and thus proper treatment can be made possible. With the addition of Internet of Things in healthcare, real-time data collection and pre-processing for signal analysis has reduced burden of in-person appointments and decision making on healthcare. Recently, Deep learning-based algorithms have been implemented by researchers for recognition, realization and prediction of diseases by extracting and analyzing the important features. In this research real-time 1-D timeseries data of on-body non-invasive bio-medical sensors have been acquired and pre-processed and analyzed for anomaly detection. Feature engineered parameters of large and diverse dataset have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring the implemented system uses wavelet time scattering features for classification and deep learning based autoencoder for anomaly detection of time series signals for assisting the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of IoT based healthcare system using bio-medical sensors has been presented. This paper also aims to provide the analysis of cloud data acquired through bio-medical sensors using signal analysis techniques for anomaly detection and timeseries classification has been done for the disease prognosis in real-time. Wavelet time scattering based signals classification accuracy of 99.88% is achieved. In real time signals anomaly detection, 98% accuracy is achieved. The average Mean Absolute Error loss of 0.0072 for normal signals and 0.078 is achieved for anomaly signals.


2019 ◽  
Vol 8 (3) ◽  
pp. 1391-1395

The ongoing increase in the use of wireless Internet and smartphones has resulted in changing consumer patterns, which has changed the demand for network usage such that existing hardware-centric devices cannot satisfy this demand. One of the fastest growing technologies is software define network, which can solve this problem. An intrusion detection system is a system that detects and responds to network attacks in real time in a network environment based on software define network. The focus of this paper is to present a deep learning-based network detection system. We describe pre-processing for deep learning algorithms and propose an architecture of the detection system. The analysis results of the system are also described


Sign in / Sign up

Export Citation Format

Share Document