Real Time Fuzzy based Intelligent Parking Detection System Using Deep Learning Techniques

Author(s):  
Neeru Mago ◽  
Satish Kumar ◽  
Lalit Mohan Goyal
Author(s):  
Kanushka Gajjar ◽  
Theo van Niekerk ◽  
Thomas Wilm ◽  
Paolo Mercorelli

Potholes on roads pose a major threat to motorists and autonomous vehicles. Driving over a pothole has the potential to cause serious damage to a vehicle, which in turn may result in fatal accidents. Currently, many pothole detection methods exist. However, these methods do not utilize deep learning techniques to detect a pothole in real-time, determine the location thereof and display its location on a map. The success of determining an effective pothole detection method, which includes the aforementioned deep learning techniques, is dependent on acquiring a large amount of data, including images of potholes. Once adequate data had been gathered, the images were processed and annotated. The next step was to determine which deep learning algorithms could be utilized. Three different models, including Faster R-CNN, SSD and YOLOv3 were trained on the custom dataset containing images of potholes to determine which network produces the best results for real-time detection. It was revealed that YOLOv3 produced the most accurate results and performed the best in real-time, with an average detection time of only 0.836s per image. The final results revealed that a real-time pothole detection system, integrated with a cloud and maps service, can be created to allow drivers to avoid potholes.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Ismail Nasri ◽  
Mohammed Karrouchi ◽  
Hajar Snoussi ◽  
Abdelhafid Messaoudi ◽  
Kamal Kassmi

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 89278-89291 ◽  
Author(s):  
Jing Yang ◽  
Shaobo Li ◽  
Zheng Wang ◽  
Guanci Yang

2020 ◽  
Vol 35 (03) ◽  
pp. 317-328
Author(s):  
Xunsheng Du ◽  
Yuchen Jin ◽  
Xuqing Wu ◽  
Yu Liu ◽  
Xianping (Sean) Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document