scholarly journals Real-Time Detection of Ground Objects Based on Unmanned Aerial Vehicle Remote Sensing with Deep Learning: Application in Excavator Detection for Pipeline Safety

2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 495
Author(s):  
Liang Jin ◽  
Guodong Liu

Compared with ordinary images, each of the remote sensing images contains many kinds of objects with large scale changes, providing more details. As a typical object of remote sensing image, ship detection has been playing an essential role in the field of remote sensing. With the rapid development of deep learning, remote sensing image detection method based on convolutional neural network (CNN) has occupied a key position. In remote sensing images, the objects of which small scale objects account for a large proportion are closely arranged. In addition, the convolution layer in CNN lacks ample context information, leading to low detection accuracy for remote sensing image detection. To improve detection accuracy and keep the speed of real-time detection, this paper proposed an efficient object detection algorithm for ship detection of remote sensing image based on improved SSD. Firstly, we add a feature fusion module to shallow feature layers to refine feature extraction ability of small object. Then, we add Squeeze-and-Excitation Network (SE) module to each feature layers, introducing attention mechanism to network. The experimental results based on Synthetic Aperture Radar ship detection dataset (SSDD) show that the mAP reaches 94.41%, and the average detection speed is 31FPS. Compared with SSD and other representative object detection algorithms, this improved algorithm has a better performance in detection accuracy and can realize real-time detection.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5315
Author(s):  
Chia-Pei Tang ◽  
Kai-Hong Chen ◽  
Tu-Liang Lin

Colonoscopies reduce the incidence of colorectal cancer through early recognition and resecting of the colon polyps. However, the colon polyp miss detection rate is as high as 26% in conventional colonoscopy. The search for methods to decrease the polyp miss rate is nowadays a paramount task. A number of algorithms or systems have been developed to enhance polyp detection, but few are suitable for real-time detection or classification due to their limited computational ability. Recent studies indicate that the automated colon polyp detection system is developing at an astonishing speed. Real-time detection with classification is still a yet to be explored field. Newer image pattern recognition algorithms with convolutional neuro-network (CNN) transfer learning has shed light on this topic. We proposed a study using real-time colonoscopies with the CNN transfer learning approach. Several multi-class classifiers were trained and mAP ranged from 38% to 49%. Based on an Inception v2 model, a detector adopting a Faster R-CNN was trained. The mAP of the detector was 77%, which was an improvement of 35% compared to the same type of multi-class classifier. Therefore, our results indicated that the polyp detection model could attain a high accuracy, but the polyp type classification still leaves room for improvement.


Author(s):  
Vibhavari B Rao

The crime rates today can inevitably put a civilian's life in danger. While consistent efforts are being made to alleviate crime, there is also a dire need to create a smart and proactive surveillance system. Our project implements a smart surveillance system that would alert the authorities in real-time when a crime is being committed. During armed robberies and hostage situations, most often, the police cannot reach the place on time to prevent it from happening, owing to the lag in communication between the informants of the crime scene and the police. We propose an object detection model that implements deep learning algorithms to detect objects of violence such as pistols, knives, rifles from video surveillance footage, and in turn send real-time alerts to the authorities. There are a number of object detection algorithms being developed, each being evaluated under the performance metric mAP. On implementing Faster R-CNN with ResNet 101 architecture we found the mAP score to be about 91%. However, the downside to this is the excessive training and inferencing time it incurs. On the other hand, YOLOv5 architecture resulted in a model that performed very well in terms of speed. Its training speed was found to be 0.012 s / image during training but naturally, the accuracy was not as high as Faster R-CNN. With good computer architecture, it can run at about 40 fps. Thus, there is a tradeoff between speed and accuracy and it's important to strike a balance. We use transfer learning to improve accuracy by training the model on our custom dataset. This project can be deployed on any generic CCTV camera by setting up a live RTSP (real-time streaming protocol) and streaming the footage on a laptop or desktop where the deep learning model is being run.


Sign in / Sign up

Export Citation Format

Share Document