Experimental Test of a Two-Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned Quadrotor Helicopter

2012 ◽  
Vol 70 (1-4) ◽  
pp. 107-117 ◽  
Author(s):  
M. Hadi Amoozgar ◽  
Abbas Chamseddine ◽  
Youmin Zhang
Author(s):  
Magnus F. Asmussen ◽  
Henrik C. Pedersen ◽  
Lina Lilleengen ◽  
Andreas Larsen ◽  
Thomas Farsakoglou

Abstract Pitch systems impose an important part of today’s wind turbines, where they are both used for power regulation and serve as part of a turbines safety system. Any failure on a pitch system is therefore equal to an increase in downtime of the turbine and should hence be avoided. By implementing a Fault Detection and Diagnosis (FDD) scheme faults may be detected and estimated before resulting in a failure, thus increasing the availability and aiding in the maintenance of the wind turbine. The focus of this paper is therefore on the development of a FDD algorithm to detect leakage and sensor faults in a fluid power pitch system. The FDD algorithm is based on a State Augmented Extended Kalman Filter (SAEKF) and a bank of observers, which is designed utilizing an experimentally validated model of a pitch system. The SAEKF is designed to detect and estimate both internal and external leakage faults, while also estimating the unknown external load on the system, and the bank of observers to detect sensor drop-outs. From simulation it is found that the SAEKF may detect both abrupt and evolving internal and external leakages, while being robust towards noise and variation in system parameters. Similar it is found that the scheme is able to detect sensor drop-outs, but is less robust towards this.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1228-1239 ◽  
Author(s):  
Julio Alberto Guzmán-Rabasa ◽  
Francisco Ronay López-Estrada ◽  
Brian Manuel González-Contreras ◽  
Guillermo Valencia-Palomo ◽  
Mohammed Chadli ◽  
...  

This paper presents the design of a fault detection and diagnosis system for a quadrotor unmanned aerial vehicle under partial or total actuator fault. In order to control the quadrotor, the dynamic system is divided in two subsystems driven by the translational and the rotational dynamics, where the rotational subsystem is based on a linear parameter-varying model. A robust linear parameter-varying observer applied to the rotational subsystem is considered to detect actuator faults, which can occur as total failures (loss of a propeller or a motor) or partial faults (degradation). Furthermore, fault diagnosis is done by analyzing the displacements of the roll and pitch angles. Numerical experiments are carried out in order to illustrate the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document