resonant systems
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 18 ◽  
pp. 100314
Author(s):  
Kostiantyn Torokhtii ◽  
Nicola Pompeo ◽  
Enrico Silva ◽  
Andrea Alimenti

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yehonatan Gelkop ◽  
Fabrizio Di Mei ◽  
Sagi Frishman ◽  
Yehudit Garcia ◽  
Ludovica Falsi ◽  
...  

AbstractA hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses. We show how nonlinearity can transform a bulk KTN perovskite into a broadband 3D hyperbolic substance for visible light, manifesting negative refraction and superlensing at room-temperature. The phenomenon is a consequence of giant electro-optic response to the electric field generated by the thermal diffusion of photogenerated charges. Results open new scenarios in the exploration of enhanced light-matter interaction and in the design of broadband photonic devices.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changan Bai ◽  
Tianning Chen ◽  
Wuzhou Yu

Multiple valves in the pipeline system belong to obvious periodic structure distribution types. When a high-speed airstream flows through the pipeline valve, it produces obvious aero-acoustic and acoustic resonance. Acoustic resonant systems with single and six-pipe valves were investigated to understand the flow and acoustic characteristics using a numerical simulation method and testing method. The strongest acoustic resonance occurred at a specific flow velocity with a corresponding Strouhal number of 0.47 corresponding to the geometric parameters in the paper. Moreover, acoustic resonance occurred in a certain velocity range, rather than increasing with the increase of the velocity of the pipeline. This regular increase provided an important theoretical basis for the prediction of the acoustic resonant and ultimate acoustic load of a single-valve system. When the pipeline was attached with multiple valves and the physical dimension was large, the conventional aero-acoustics calculation results were seriously attenuated at high frequency; the calculation method involving a cut-off frequency in this paper was presented and could be used to explain the excellent agreement of the sound pressure level (SPL) below the cut-off frequency and the poor agreement above the cut-off frequency. A new method involving steady flow and stochastic noise generation and radiation (SNGR) was proposed to obtain better results for the SPL at the middle and high frequencies. The comparison results indicated that the traditional method of Lighthill analogy and unsteady flow could accurately acquire aerodynamic noise below the cut-off frequency, while the new method involving steady flow and SNGR could quickly acquire aerodynamic noise above the cut-off frequency.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1510
Author(s):  
Maja Žulj ◽  
Brigita Ferčec ◽  
Matej Mencinger

In this paper, the linearizability of a 2:−3 resonant system with quadratic nonlinearities is studied. We provide a list of the conditions for this family of systems having a linearizable center. The conditions for linearizablity are obtained by computing the ideal generated by the linearizability quantities and its decomposition into associate primes. To successfully perform the calculations, we use an approach based on modular computations. The sufficiency of the obtained conditions is proven by several methods, mainly by the method of Darboux linearization.


2021 ◽  
Author(s):  
Adrien Leleu

<p class="p1">Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. As unveiled by TESS, CHEOPS, ESPRESSO, NGTS and SPECULOOS, TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, all planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet. TOI-178 have hence several characteristics that were not previously observed in a single system, making it a key system for the study of processes of formation and evolution of planetary systems. We will review what we know of TOI-178, and what we expect from futur observations.</p>


2021 ◽  
Vol 7 (23) ◽  
pp. eabg8118
Author(s):  
Rodion Kononchuk ◽  
Joshua Feinberg ◽  
Joseph Knee ◽  
Tsampikos Kottos

Typical sensors detect small perturbations by measuring their effects on a physical observable, using a linear response principle (LRP). It turns out that once LRP is abandoned, new opportunities emerge. A prominent example is resonant systems operating near Nth-order exceptional point degeneracies (EPDs) where a small perturbation ε ≪ 1 activates an inherent sublinear response ∼εN≫ε in resonant splitting. Here, we propose an alternative sublinear optomechanical sensing scheme that is rooted in Wigner’s cusp anomalies (WCAs), first discussed in the framework of nuclear reactions: a frequency-dependent square-root singularity of the differential scattering cross section around the energy threshold of a newly opened channel, which we use to amplify small perturbations. WCA hypersensitivity can be applied in a variety of sensing applications, besides optomechanical accelerometry discussed in this paper. Our WCA platforms are compact, do not require a judicious arrangement of active elements (unlike EPD platforms), and, if chosen, can be cavity free.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
V.A. Tsarev ◽  
◽  
A.V. Livchina ◽  

This paper presents the results of comparing data from three-dimensional electromagnetic modeling of two designs of double-gap photonic crystal resonators of a two-barrel multi-beam klystron operating in the X-band at an accelerating voltage of 3.6 kV. These resonators are designed to operate on the main π-type oscillation with an output power level of about 2 kW. They are characterized by different profiles of the beam-let tubes. Each of the beam-let tubes in these structures contains 19 beam channels arranged in linear rows. The results of optimization of the complex of electronic and electro-dynamic parameters are presented. The optimal parameters and designs of resonant systems are found, which make it possible to significantly reduce the degree of inhomogeneity of the effective characteristic resistance in the interaction space.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 385-392
Author(s):  
Joeri Lenaerts ◽  
Hannah Pinson ◽  
Vincent Ginis

AbstractMachine learning offers the potential to revolutionize the inverse design of complex nanophotonic components. Here, we propose a novel variant of this formalism specifically suited for the design of resonant nanophotonic components. Typically, the first step of an inverse design process based on machine learning is training a neural network to approximate the non-linear mapping from a set of input parameters to a given optical system’s features. The second step starts from the desired features, e.g. a transmission spectrum, and propagates back through the trained network to find the optimal input parameters. For resonant systems, this second step corresponds to a gradient descent in a highly oscillatory loss landscape. As a result, the algorithm often converges into a local minimum. We significantly improve this method’s efficiency by adding the Fourier transform of the desired spectrum to the optimization procedure. We demonstrate our method by retrieving the optimal design parameters for desired transmission and reflection spectra of Fabry–Pérot resonators and Bragg reflectors, two canonical optical components whose functionality is based on wave interference. Our results can be extended to the optimization of more complex nanophotonic components interacting with structured incident fields.


Sign in / Sign up

Export Citation Format

Share Document