Switched Modeling and Task–Priority Motion Planning of Wheeled Mobile Robots Subject to Slipping

2016 ◽  
Vol 85 (3-4) ◽  
pp. 449-469 ◽  
Author(s):  
Katarzyna Zadarnowska
Author(s):  
Eric Heiden ◽  
Luigi Palmieri ◽  
Leonard Bruns ◽  
Kai Oliver Arras ◽  
Gaurav Sukhatme ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3517
Author(s):  
Mohammad Mohammadpour ◽  
Lotfi Zeghmi ◽  
Sousso Kelouwani ◽  
Marc-André Gaudreau ◽  
Ali Amamou ◽  
...  

In recent years, the use of electric Autonomous Wheeled Mobile Robots (AWMRs) has dramatically increased in transport of the production chain. Generally, AWMRs must operate for several hours on a single battery charge. Since the energy density of the battery is limited, energy efficiency becomes a key element in improving material transportation performance during the manufacturing process. However, energy consumption is influenced by the navigation stages, because the type of motion necessary for the AWMR to perform during a mission is totally defined by these stages. Therefore, this paper analyzes methods of energy efficiency that have been studied recently for AWMR navigation stages. The selected publications are classified into planning and motion control categories in order to identify research gaps. Unlike other similar studies, this work focuses on these methods with respect to their implications for the energy consumption of AWMRs. In addition, by using an industrial Self-Guided Vehicle (SGV), we illustrate the direct influence of the motion planning stage on global energy consumption by means of several simulations and experiments. The results indicate that the reaction of the SGV in response to unforeseen obstacles can affect the amount of energy consumed. Hence, energy constraints must be considered when developing the motion planning of AWMRs.


Sign in / Sign up

Export Citation Format

Share Document