scholarly journals An Investigation into the Energy-Efficient Motion of Autonomous Wheeled Mobile Robots

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3517
Author(s):  
Mohammad Mohammadpour ◽  
Lotfi Zeghmi ◽  
Sousso Kelouwani ◽  
Marc-André Gaudreau ◽  
Ali Amamou ◽  
...  

In recent years, the use of electric Autonomous Wheeled Mobile Robots (AWMRs) has dramatically increased in transport of the production chain. Generally, AWMRs must operate for several hours on a single battery charge. Since the energy density of the battery is limited, energy efficiency becomes a key element in improving material transportation performance during the manufacturing process. However, energy consumption is influenced by the navigation stages, because the type of motion necessary for the AWMR to perform during a mission is totally defined by these stages. Therefore, this paper analyzes methods of energy efficiency that have been studied recently for AWMR navigation stages. The selected publications are classified into planning and motion control categories in order to identify research gaps. Unlike other similar studies, this work focuses on these methods with respect to their implications for the energy consumption of AWMRs. In addition, by using an industrial Self-Guided Vehicle (SGV), we illustrate the direct influence of the motion planning stage on global energy consumption by means of several simulations and experiments. The results indicate that the reaction of the SGV in response to unforeseen obstacles can affect the amount of energy consumed. Hence, energy constraints must be considered when developing the motion planning of AWMRs.

Author(s):  
Haojie Zhang ◽  
Yudong Zhang ◽  
Tiantian Yang

Purpose As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots. Design/methodology/approach The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness. Findings According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented. Research limitations/implications EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study. Practical implications The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios. Originality/value This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 317-325 ◽  
Author(s):  
Bo You ◽  
Zhi Li ◽  
Liang Ding ◽  
Haibo Gao ◽  
Jiazhong Xu

Wheeled mobile robots are widely utilized for environment-exploring tasks both on earth and in space. As a basis for global path planning tasks for wheeled mobile robots, in this study we propose a method for establishing an energy-based cost map. Then, we utilize an improved dual covariant Hamiltonian optimization for motion planning method, to perform point-to-region path planning in energy-based maps. The method is capable of efficiently handling high-dimensional path planning tasks with non-convex cost functions through applying a robust active set algorithm, that is, non-monotone gradient projection algorithm. To solve the problem that the path planning process is locked in weak minima or non-convergence, we propose a randomized variant of the improved dual covariant Hamiltonian optimization for motion planning based on simulated annealing and Hamiltonian Monte Carlo methods. The results of simulations demonstrate that the final paths generated can be time efficient, energy efficient and smooth. And the probabilistic completeness of the method is guaranteed.


Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


2021 ◽  
Vol 58 (02) ◽  
pp. 192-203
Author(s):  
Padam Singh ◽  
T. P. Singh ◽  
Rajat Kumar Sharma ◽  
Yogesh Kumar Negi ◽  
Ramesh Pal

Pine needle is a typical biomass which is abundantly available in Uttarakhand hills. This shredded biomass contributes significantly in forest fire occurring regularly in Uttarakhand. Different energy harnessing routes as direct combustion, anaerobic digestion, pyrolysis, gasification, and briquetting for pine needle were reviewed. These routes were further compared on the basis of energy consumption and energy efficiency of the processes as per the available literature. The review suggested that briquetting of pine needle and its anaerobic digestion are two most energy efficient methods having energy efficiency of 88% and 41.6%, respectively. The estimated energy required for briquetting of 1 ton pine needle was 1370.5 MJ, whereas for gasification it was 1170 MJ


2021 ◽  
Vol 11 (4) ◽  
pp. 42-58
Author(s):  
Semab Iqbal ◽  
Israr Hussain ◽  
Zubair Sharif ◽  
Kamran Hassan Qureshi ◽  
Javeria Jabeen

Despite the fact that the ocean plays a role in everything from the air we breathe to daily weather and climate patterns, we know very little about our ocean. Underwater wireless sensor network (UWSN) is one of the options helping us to discover some domains such as natural assets and underwater resource exploration. However, the acoustic signal is the only suitable option in underwater communication in the absence of radio waves, which face a number of challenges under this environment. To overcome these issues, many routing schemes are introduced by researchers though energy consumption is still a challenge in underwater communication. To overcome the issue of rapid energy consumption, a reliable and energy-efficient routing method is introduced that avoids the redundant forwarding of data; hence, it achieves energy efficiency and eventually prolongs the network lifetime. Simulation results support the claim that the proposed scheme achieves energy efficiency along higher delivery ratio by reducing the data transmission error rate during the routing decisions.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


2020 ◽  
Vol 12 (21) ◽  
pp. 8867
Author(s):  
Ayoub Zeraibi ◽  
Daniel Balsalobre-Lorente ◽  
Khurram Shehzad

This study aims to explore the connection between the potential effects of energy consumption and technological innovation on economic growth in China from 1980 to 2018. The Non-Linear Autoregressive Distributive Lag (NARDL) econometric approach reveals an asymmetric connection between technological innovation, energy consumption, and economic growth in China from 1980 to 2018. The empirical results also reveal that a 1% decrease in energy consumption would imperatively decline economic growth by 12.5%. Moreover, a 1% upsurge in trademark applications improves economic growth by 8.2%. For the case of China, this study reveals that a large portion of the energy was used by families, which is regarded as a non-contributing element to the economy of China. This study suggests that the promotion and production of energy-efficient processes and products is necessary in order to make a more significant step toward sustainable development. The empirical findings also suggest that the Chinese government should regulate suitable policies aimed at promoting energy efficiency and the control of inefficient energy uses.


Sign in / Sign up

Export Citation Format

Share Document