scholarly journals Relative Camera Pose Estimation using Synthetic Data with Domain Adaptation via Cycle-Consistent Adversarial Networks

2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Chenhao Yang ◽  
Yuyi Liu ◽  
Andreas Zell

AbstractLearning-based visual localization has become prospective over the past decades. Since ground truth pose labels are difficult to obtain, recent methods try to learn pose estimation networks using pixel-perfect synthetic data. However, this also introduces the problem of domain bias. In this paper, we first build a Tuebingen Buildings dataset of RGB images collected by a drone in urban scenes and create a 3D model for each scene. A large number of synthetic images are generated based on these 3D models. We take advantage of image style transfer and cycle-consistent adversarial training to predict the relative camera poses of image pairs based on training over synthetic environment data. We propose a relative camera pose estimation approach to solve the continuous localization problem for autonomous navigation of unmanned systems. Unlike those existing learning-based camera pose estimation methods that train and test in a single scene, our approach successfully estimates the relative camera poses of multiple city locations with a single trained model. We use the Tuebingen Buildings and the Cambridge Landmarks datasets to evaluate the performance of our approach in a single scene and across-scenes. For each dataset, we compare the performance between real images and synthetic images trained models. We also test our model in the indoor dataset 7Scenes to demonstrate its generalization ability.

Author(s):  
E. V. Shalnov ◽  
A. S. Konushin

Known scene geometry and camera calibration parameters give important information to video content analysis systems. In this paper, we propose a novel method for camera pose estimation based on people observation in the input video captured by static camera. As opposed to previous techniques, our method can deal with false positive detections and inaccurate localization results. Specifically, the proposed method does not make any assumption about the utilized object detector and takes it as a parameter. Moreover, we do not require a huge labeled dataset of real data and train on the synthetic data only. We apply the proposed technique for camera pose estimation based on head observations. Our experiments show that the algorithm trained on the synthetic dataset generalizes to real data and is robust to false positive detections.


2021 ◽  
Author(s):  
Xueyan Oh ◽  
Leonard Loh ◽  
Shaohui Foong ◽  
Zhong Bao Andy Koh ◽  
Kow Leong Ng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document