Silver diffusion effects in aluminum nitride/silver films on polydimethylsiloxane gratings via nitrogen–argon sputtering

2020 ◽  
Vol 31 (9) ◽  
pp. 6861-6865
Author(s):  
Joel Yi Yang Loh ◽  
Nazir P. Kherani
1996 ◽  
Vol 434 ◽  
Author(s):  
Paul W. Wang ◽  
Shixian Sui

AbstractComposite films of aluminum nitride and alumina were fabricated on 6061 aluminum alloys in a d.c. plasma chamber. Samples were treated by three main processes. They were 1) Ar plasma etching, 2) NH3/Ar plasma with low pressure and low current density, and 3) NH3 plasma with high pressure and high current density. The oxygen-free Al surface was obtained after 10 min. 2.8 keV Ar+ sputtering in a UHV analysis chamber after the sample was treated by processes 1 and 2. Composite films of aluminum nitride and alumina were obtained on samples treated by processes 1, 2, and 3. The surface compositions and bonding environments of the composite films were characterized by AES and XPS. Composite films containing Al-N, Al-O and Al-Al bonds were formed but no nitrogen-oxygen bonds were observed. The thicknesses of the films were estimated by argon sputtering in the UHV chamber. The surface morphologies of samples after fabrication processes in d.c. plasma were investigated by SEM. A possible formation mechanism of the composite film in the ammonia plasma is proposed.


Author(s):  
Joseph D. C. Peng

The relative intensities of the ED spots in a cross-grating pattern can be calculated using N-beam electron diffraction theory. The scattering matrix formulation of N-beam ED theory has been previously applied to imperfect microcrystals of gold containing stacking disorder (coherent twinning) in the (111) crystal plane. In the present experiment an effort has been made to grow single-crystalline, defect-free (111) gold films of a uniform and accurately know thickness using vacuum evaporation techniques. These represent stringent conditions to be met experimentally; however, if a meaningful comparison is to be made between theory and experiment, these factors must be carefully controlled. It is well-known that crystal morphology, perfection, and orientation each have pronounced effects on relative intensities in single crystals.The double evaporation method first suggested by Pashley was employed with some modifications. Oriented silver films of a thickness of about 1500Å were first grown by vacuum evaporation on freshly cleaved mica, with the substrate temperature at 285° C during evaporation with the deposition rate at 500-800Å/sec.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Author(s):  
Daniel Callahan ◽  
G. Thomas

Oxygen impurities may significantly influence the properties of nitride ceramics with a strong dependence on the microstructural distribution of the impurity. For example, amorphous oxygen-rich grain boundary phases are well-known to cause high-temperature mechanical strength degradation in silicon nitride whereas solutionized oxygen is known to decrease the thermal conductivity of aluminum nitride. Microanalytical characterization of these impurities by spectral methods in the AEM is complicated by reactions which form oxygen-rich surface phases not representative of the bulk material. Furthermore, the impurity concentrations found in higher quality ceramics may be too low to measure by EDS or PEELS. Consequently an alternate method for the characterization of impurities in these ceramics has been investigated.Convergent beam electron diffraction (CBED) is a promising technique for the study of impurity distributions in aluminum nitride ceramics. Oxygen is known to enter into stoichiometric solutions with AIN with a consequent decrease in lattice parameter.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


1998 ◽  
Vol 77 (5) ◽  
pp. 1427-1436
Author(s):  
L. Kaplan, A. Shehter, Y. Lereah, H.Ta

2008 ◽  
Author(s):  
A. Kabulski ◽  
V. R. Pagán ◽  
D. Cortes ◽  
R. Burda ◽  
O. M. Mukdadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document