A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering

2008 ◽  
Vol 20 (S1) ◽  
pp. 259-269 ◽  
Author(s):  
Lynda V. Thomas ◽  
U. Arun ◽  
S. Remya ◽  
Prabha D. Nair
RSC Advances ◽  
2018 ◽  
Vol 8 (63) ◽  
pp. 35917-35927 ◽  
Author(s):  
Yao Wang ◽  
Tonghe Zhu ◽  
Haizhu Kuang ◽  
Xiaoning Sun ◽  
Jingjing Zhu ◽  
...  

SEM micrographs of the PEUU nanofibrous membrane, PU75 nanofibrous membrane, PU75-DT nanofibrous membrane, PU75-GA nanofibrous membrane, and PU75-E/N nanofibrous membrane and magnified 1000, 5000, and 10 000 times, respectively.


2019 ◽  
Vol 34 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Lynda Velutheril Thomas ◽  
Prabha Damodaran Nair

The main aim of this study is to fabricate an electrospun citric acid modified polyvinyl alcohol polyester that is biodegradable with non-toxic by-products and can be used for the culture of vascular smooth muscle cells. In this study, we have optimized the conditions for the electrospinning process of this polyester. The fibre morphology was studied by scanning electron microscopy which indicated that the fibre diameter was optimum at a range of 200 to 700 µm at 5% concentration and flow rate of 0.3 mL/h. The membranes were characterized for the change in structural aspects at the molecular level. The results showed development of more crystalline domains on electrospinning. The surface characteristics were also explored. Cell culture studies confirmed that the electrospun scaffold supported the attachment and proliferation of smooth muscle cells, which was evident from the cell proliferation assay. Hence, the electrospun polyester scaffolds are non-toxic and biocompatible with vascular smooth muscle cells, and find promising potential as scaffolds for vascular tissue engineering.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
K Kallenbach ◽  
J Heine ◽  
E Lefik ◽  
S Cebotari ◽  
A Lichtenberg ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Author(s):  
Faraz Fazal ◽  
Francisco Javier Diaz Sanchez ◽  
Muhammad Waqas ◽  
Vasileios Koutsos ◽  
Anthony Callanan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document