Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.

2021 ◽  
Vol 7 ◽  
Author(s):  
Bruna B. J. Leal ◽  
Naohiro Wakabayashi ◽  
Kyohei Oyama ◽  
Hiroyuki Kamiya ◽  
Daikelly I. Braghirolli ◽  
...  

Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.


2019 ◽  
Vol 133 (9) ◽  
pp. 1115-1135 ◽  
Author(s):  
Prafulla Chandra ◽  
Anthony Atala

Abstract Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.


2013 ◽  
Vol 22 (3) ◽  
pp. e40
Author(s):  
Murielle Rémy ◽  
Patrick Menu ◽  
J.C. Voegel ◽  
J.F. Ponsot ◽  
M.F. Harmand ◽  
...  

2020 ◽  
Vol 105 ◽  
pp. 146-158 ◽  
Author(s):  
Prerak Gupta ◽  
Katherine L. Lorentz ◽  
Darren G. Haskett ◽  
Eoghan M. Cunnane ◽  
Aneesh K. Ramaswamy ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4551-4558 ◽  
Author(s):  
Patrick Au ◽  
Joshua Tam ◽  
Dai Fukumura ◽  
Rakesh K. Jain

Abstract Vascular tissue engineering requires a ready source of endothelial cells and perivascular cells. Here, we evaluated human bone marrow–derived mesenchymal stem cells (hMSCs) for use as vascular progenitor cells in tissue engineering and regenerative medicine. hMSCs expressed a panel of smooth muscle markers in vitro including the cardiac/smooth muscle–specific transcription coactivator, myocardin. Cell-cell contact between endothelial cells and hMSCs up-regulated the transcription of myocardin. hMSCs efficiently stabilized nascent blood vessels in vivo by functioning as perivascular precursor cells. The engineered blood vessels derived from human umbilical cord vein endothelial cells and hMSCs remained stable and functional for more than 130 days in vivo. On the other hand, we could not detect differentiation of hMSCs to endothelial cells in vitro, and hMSCs by themselves could not form conduit for blood flow in vivo. Similar to normal perivascular cells, hMSC-derived perivascular cells contracted in response to endothelin-1 in vivo. In conclusion, hMSCs are perivascular cell precursors and may serve as an attractive source of cells for use in vascular tissue engineering and for the study of perivascular cell differentiation.


Author(s):  
Krishna Madhavan ◽  
Walter Bonani ◽  
Wei Tan

Vascular grafts are often used as blood vessel substitutes. Until now, synthetic materials have not matched the efficacy of native tissues, particularly in the applications of small-diameter vascular grafts (<6mm) such as bypass grafts for arthrosclerosis and vascular access graft for hemodialysis. There is a considerable need for alternatives to the autologous veins or arteries. Many patients do not have an autologous vessel suitable for use due to preexisting pathological conditions or previous surgical harvest. Recent developments in vascular tissue engineering demonstrate the possibility of a biodegradable graft material containing living cells to mimic the structure and function of native vessels. However, fabrication of biomimetic grafts is often time and labor intensive, and subsequently requires complicated storage. This demands technology advancements in producing vessel mimetic grafts, considering their availability in addition to efficacy. To this end, new approaches to constructing small-diameter grafts that are of immediate availability and capable of regenerating biomimetic blood vessels in vivo may address the unmet demand in this area. We have designed a novel multilayer vascular construct which is made up of a nanofibrous “intima-equivalent” with thrombus-resistant vessel lumen and a porous biopolymer matrix as “media-equivalent” to allow smooth muscle cells (SMC) from native artery to grow and remodel the tissue. In this study, various layering strategies have been explored. To evaluate the resultant multilayer construct, structural, biochemical and biomechanical characterizations, as well as cell assays and short-term animal studie have been performed.


Biomaterials ◽  
2013 ◽  
Vol 34 (38) ◽  
pp. 9842-9852 ◽  
Author(s):  
Murielle Rémy ◽  
Marlène Durand ◽  
Patrick Menu ◽  
Jean Claude Voegel ◽  
Jean François Ponsot ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document