A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice

2020 ◽  
Vol 39 (4) ◽  
pp. 1208-1220 ◽  
Author(s):  
Qingqin Nong ◽  
Jiazhu Fang ◽  
Suning Gong ◽  
Dingzhu Du ◽  
Yan Feng ◽  
...  
2019 ◽  
Vol 11 (06) ◽  
pp. 1950075
Author(s):  
Lei Lai ◽  
Qiufen Ni ◽  
Changhong Lu ◽  
Chuanhe Huang ◽  
Weili Wu

We consider the problem of maximizing monotone submodular function over the bounded integer lattice with a cardinality constraint. Function [Formula: see text] is submodular over integer lattice if [Formula: see text], [Formula: see text], where ∨ and ∧ represent elementwise maximum and minimum, respectively. Let [Formula: see text], and [Formula: see text], we study the problem of maximizing submodular function [Formula: see text] with constraints [Formula: see text] and [Formula: see text]. A random greedy [Formula: see text]-approximation algorithm and a deterministic [Formula: see text]-approximation algorithm are proposed in this paper. Both algorithms work in value oracle model. In the random greedy algorithm, we assume the monotone submodular function satisfies diminishing return property, which is not an equivalent definition of submodularity on integer lattice. Additionally, our random greedy algorithm makes [Formula: see text] value oracle queries and deterministic algorithm makes [Formula: see text] value oracle queries.


Author(s):  
Zhicheng Liu ◽  
Hong Chang ◽  
Ran Ma ◽  
Donglei Du ◽  
Xiaoyan Zhang

Abstract We consider a two-stage submodular maximization problem subject to a cardinality constraint and k matroid constraints, where the objective function is the expected difference of a nonnegative monotone submodular function and a nonnegative monotone modular function. We give two bi-factor approximation algorithms for this problem. The first is a deterministic $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right),1} \right)$ -approximation algorithm, and the second is a randomized $\left( {{1 \over {k + 1}}\left( {1 - {1 \over {{e^{k + 1}}}}} \right) - \varepsilon ,1} \right)$ -approximation algorithm with improved time efficiency.


Author(s):  
Ganquan Shi ◽  
Shuyang Gu ◽  
Weili Wu

[Formula: see text]-submodular maximization is a generalization of submodular maximization, which requires us to select [Formula: see text] disjoint subsets instead of one subset. Attracted by practical values and applications, we consider [Formula: see text]-submodular maximization with two kinds of constraints. For total size and individual size difference constraints, we present a [Formula: see text]-approximation algorithm for maximizing a nonnegative k-submodular function, running in time [Formula: see text] at worst. Specially, if [Formula: see text] is multiple of [Formula: see text], the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. Besides, this algorithm can be applied to [Formula: see text]-bisubmodular achieving [Formula: see text]-approximation running in time [Formula: see text]. Furthermore, if [Formula: see text] is multiple of 2, the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. For individual size constraint, there is a [Formula: see text]-approximation algorithm for maximizing a nonnegative [Formula: see text]-submodular function and an nonnegative [Formula: see text]-bisubmodular function, running in time [Formula: see text] and [Formula: see text] respectively, at worst.


2009 ◽  
Vol 01 (01) ◽  
pp. 1-23 ◽  
Author(s):  
AKIYOSHI SHIOURA

We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 - 1/e)-approximation algorithm for the class of submodular functions which are represented as the sum of weighted rank functions of matroids. This paper sheds a new light on this result from the viewpoint of discrete convex analysis by extending it to the class of submodular functions which are the sum of M ♮-concave functions. M ♮-concave functions are a class of discrete concave functions introduced by Murota and Shioura (1999), and contain the class of the sum of weighted rank functions as a proper subclass. Our result provides a better understanding for why the pipage rounding algorithm works for the sum of weighted rank functions. Based on the new observation, we further extend the approximation algorithm to the maximization of a nondecreasing submodular function over an integral polymatroid. This extension has an application in multi-unit combinatorial auctions.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-20
Author(s):  
Pooya Jalaly ◽  
Éva Tardos

We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem requires the design a mechanism that incentivizes the sellers to truthfully report their cost and maximizes the buyer’s value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. We consider the general case where the buyer’s valuation is a monotone submodular function. There are a number of truthful mechanisms known for this problem. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5 and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an r approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a r + 1 approximation mechanism for large markets, an improvement from 2 r 2 . We also provide a mechanism without the large market assumption, where we achieve a 4 r + 1 approximation guarantee. We also show how our results can be used for the problem of a principal hiring in a Crowdsourcing Market to select a set of tasks subject to a total budget.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050007 ◽  
Author(s):  
Shuyang Gu ◽  
Ganquan Shi ◽  
Weili Wu ◽  
Changhong Lu

We study the problem of maximizing non-monotone diminish return (DR)-submodular function on the bounded integer lattice, which is a generalization of submodular set function. DR-submodular functions consider the case that we can choose multiple copies for each element in the ground set. This generalization has many applications in machine learning. In this paper, we propose a [Formula: see text]-approximation algorithm with a running time of [Formula: see text], where [Formula: see text] is the size of the ground set, [Formula: see text] is the upper bound of integer lattice. Discovering important properties of DR-submodular function, we propose a fast double greedy algorithm which improves the running time.


Sign in / Sign up

Export Citation Format

Share Document