The Influence of Eastern North American Autumnal Migrant Monarch Butterflies (Danaus plexippus L.) on Continuously Breeding Resident Monarch Populations in Southern Florida

2009 ◽  
Vol 35 (7) ◽  
pp. 816-823 ◽  
Author(s):  
Amy Knight ◽  
Lincoln P. Brower
2020 ◽  
Author(s):  
Alana A. E. Wilcox ◽  
Amy E. M. Newman ◽  
Nigel E. Raine ◽  
D. Ryan Norris

AbstractEastern North American migratory monarch butterflies (Danaus plexippus) have faced sharp declines over the last two decades. Although captive rearing has been used as an important tool for engaging the public and supplementing conservation efforts, a recent study that tested monarchs in a flight simulator suggested that captive-reared monarchs lose their capacity to orient southward during fall migration to their Mexican overwintering sites. We raised offspring of wild-caught monarchs on swamp milkweed (Asclepias incarnata) and, after eclosion, individuals were either tested in a flight simulator or radio-tracked in the wild using array of over 100 automated telemetry towers. While only 33% (7/39) of monarchs tested in the flight simulator showed strong southeast to southwest orientation, 97% (28/29) of the radio-tracked individuals were detected by automated towers south or southeast of the release site, up to 200 km away. Our results suggest that, though captive rearing of monarch butterflies may cause temporary disorientation, proper orientation is likely re-established after exposure to natural skylight cues.


2019 ◽  
Vol 116 (29) ◽  
pp. 14671-14676 ◽  
Author(s):  
Ayşe Tenger-Trolander ◽  
Wei Lu ◽  
Michelle Noyes ◽  
Marcus R. Kronforst

The annual migration of the monarch butterfly Danaus plexippus is in peril. In an effort to aid population recovery, monarch enthusiasts across North America participate in a variety of conservation efforts, including captive rearing and release of monarch butterflies throughout the summer and autumn. However, the impact of captive breeding on monarchs remains an open question. Here, we show that captive breeding, both commercially and by summertime hobbyists, causes migratory behavior to be lost. Monarchs acquired commercially failed to orient south when reared outdoors in the autumn, unlike wild-caught North American monarchs, yet they did enter reproductive diapause. The commercial population was genetically highly divergent from wild-caught North American monarchs and had rounder forewings, similar to monarchs from nonmigratory populations. Furthermore, rearing wild-caught monarchs in an indoor environment mimicking natural migration-inducing conditions failed to elicit southward flight orientation. In fact, merely eclosing indoors after an otherwise complete lifecycle outdoors was enough to disrupt southern orientation. Our results provide a window into the complexity—and remarkable fragility—of migration.


2020 ◽  
Author(s):  
Patrick Anthony Guerra ◽  
Stephen Matter

Abstract BackgroundIndividuals of many species that perform annual long-distance migrations are capable of stopping at specific overwintering destinations, despite having not been there before. The iconic monarch butterfly (Danaus plexippus) and its annual long-distance fall migration is a famous example of this phenomenon. During the fall, Eastern North American monarch butterflies use various compass mechanisms to properly orient their flight southwards, in order to leave their summer breeding grounds in Southern Canada and the Northern United States, and reach their overwintering sites in Central Mexico. It remains a mystery, however, how monarchs locate and stop at these specific, consistent overwintering sites, especially since these individuals are on their maiden voyage. MethodsWe test the hypothesis that fall migrant monarchs locate these overwintering sites by using an innate, inherited map sense based on sensing and responding to specific geomagnetic signatures that are correlated with the overwintering sites. Using a natural displacement approach, we examined if the locations of overwintering sites and the abundance of monarchs at them, changes with the natural shift of the Earth’s magnetic field over time (2004-2018).ResultsWe found that despite the natural displacement of the geomagnetic field over the years, the locations of the overwintering sites and monarch abundance were unaffected. For example, fall monarchs continued to overwinter at the most southern sites in Mexico, even when the geomagnetic coordinates associated with these sites would have shifted north due to the natural shift of the Earth’s magnetic field, placing these sites significantly outside the range of the overwintering area.ConclusionsOur results suggest that monarchs do not employ a map sense based on geomagnetic cues for finding their overwintering sites, and might instead use other mechanisms or strategies for locating them (potentially using localized sensory cues) once they are near or have arrived in Central Mexico. We suggest that future work should now focus on understanding what these cue parameters are, in order to inform conservation efforts that are aimed at protecting the threatened monarch butterfly and preserving its annual long-distance migration.


2013 ◽  
Vol 280 (1768) ◽  
pp. 20131087 ◽  
Author(s):  
D. T. Tyler Flockhart ◽  
Leonard I. Wassenaar ◽  
Tara G. Martin ◽  
Keith A. Hobson ◽  
Michael B. Wunder ◽  
...  

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies ( Danaus plexippus ) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km 2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.


Author(s):  
Felipe Dargent ◽  
Sydney M Gilmour ◽  
Emma A Brown ◽  
Rees Kassen ◽  
Heather M Kharouba

Every year monarch butterflies (Danaus plexippus Linnaeus, 1758) from the eastern North American population migrate from Mexico to Southern Canada in the spring. This northward migration has been shown to reduce monarch infection with the host-specific parasite Ophryocystis elektroscirrha (OE) (McLaughlin and Myers, 1970); yet, the prevalence of OE at their range limits, and the mechanism(s) responsible, is unknown. We assessed OE infection levels of monarchs at the northern edge of the eastern population distribution around Ottawa, Canada, and found extremely low levels of infection (~1% with upper confidence intervals close to 3%). Low OE infection levels are likely due to low densities of monarchs in this region and/or migratory escape effects, where migrating individuals leave behind areas with high density of conspecifics and high potential for parasite accumulation and transmission. Future work should aim to disentangle the relative contribution of these two mechanisms for governing the decrease in parasitism at the range limits of migratory populations.


2021 ◽  
pp. 1-16
Author(s):  
Alana A.E. Wilcox ◽  
Amy E.M. Newman ◽  
D. Ryan Norris

Abstract Neonicotinoid insecticides are used to reduce crop damage caused by insect pests, but sublethal levels could affect development and reproduction in nontarget insects, such as monarch butterflies (Danaus plexippus) (Lepidoptera: Nymphalidae). To investigate the impact of field-realistic concentrations of the neonicotinoid clothianidin on monarch butterflies, we grew swamp milkweed (Asclepias incarnata) (Apocynaceae) in either low (15 ng/g of soil) or high (25 ng/g of soil) levels of clothianidin, or in a control (0 ng/g), then raised monarchs on the milkweed. Morphological traits of monarch caterpillars were measured during development and, once they eclosed, were mated as adults to quantify egg size and mass and the number of eggs laid. Although the effects of the treatment had complex effects on caterpillar length, width and volume of late-instar caterpillars were negatively affected. Fifth-instar caterpillars from the high-dose insecticide treatment had lower mass than other groups. Adult monarch butterflies raised on treated milkweed were larger than controls, but clothianidin exposure did not affect the number of eggs laid or egg size. Although the magnitude of the effect depends on clothianidin concentration, our results suggest that exposure to clothianidin during early life can impact monarch caterpillar development but is unlikely to reduce female reproductive output.


Sign in / Sign up

Export Citation Format

Share Document