scholarly journals Captive-reared migratory monarch butterflies show natural orientation when released in the wild

2020 ◽  
Author(s):  
Alana A. E. Wilcox ◽  
Amy E. M. Newman ◽  
Nigel E. Raine ◽  
D. Ryan Norris

AbstractEastern North American migratory monarch butterflies (Danaus plexippus) have faced sharp declines over the last two decades. Although captive rearing has been used as an important tool for engaging the public and supplementing conservation efforts, a recent study that tested monarchs in a flight simulator suggested that captive-reared monarchs lose their capacity to orient southward during fall migration to their Mexican overwintering sites. We raised offspring of wild-caught monarchs on swamp milkweed (Asclepias incarnata) and, after eclosion, individuals were either tested in a flight simulator or radio-tracked in the wild using array of over 100 automated telemetry towers. While only 33% (7/39) of monarchs tested in the flight simulator showed strong southeast to southwest orientation, 97% (28/29) of the radio-tracked individuals were detected by automated towers south or southeast of the release site, up to 200 km away. Our results suggest that, though captive rearing of monarch butterflies may cause temporary disorientation, proper orientation is likely re-established after exposure to natural skylight cues.

2020 ◽  
Vol 224 (4) ◽  
pp. jeb230870
Author(s):  
Alana A. E. Wilcox ◽  
Amy E. M. Newman ◽  
Nigel E. Raine ◽  
Greg W. Mitchell ◽  
D. Ryan Norris

ABSTRACTMigratory insects use a variety of innate mechanisms to determine their orientation and maintain correct bearing. For long-distance migrants, such as the monarch butterfly (Danaus plexippus), these journeys could be affected by exposure to environmental contaminants. Neonicotinoids are synthetic insecticides that work by affecting the nervous system of insects, resulting in impairment of their mobility, cognitive performance, and other physiological and behavioural functions. To examine how neonicotinoids might affect the ability of monarch butterflies to maintain a proper directional orientation on their ∼4000 km migration, we grew swamp milkweed (Asclepias incarnata) in soil that was either untreated (0 ng g−1: control) or mixed with low (15 ng g−1 of soil) or high (25 ng g−1 of soil) levels of the neonicotinoid clothianidin. Monarch caterpillars were raised on control or clothianidin-treated milkweed and, after pupation, either tested for orientation in a static flight simulator or radio-tracked in the wild during the autumn migration period. Despite clothianidin being detectable in milkweed tissue consumed by caterpillars, there was no evidence that clothianidin influenced the orientation, vector strength (i.e. concentration of direction data around the mean) or rate of travel of adult butterflies, nor was there evidence that morphological traits (i.e. mass and forewing length), testing time, wind speed or temperature impacted directionality. Although sample sizes for both flight simulator and radio-tracking tests were limited, our preliminary results suggest that clothianidin exposure during early caterpillar development does not affect the directed flight of adult migratory monarch butterflies or influence their orientation at the beginning of migration.


2020 ◽  
Vol 16 (4) ◽  
pp. 20190922 ◽  
Author(s):  
Andrew K. Davis ◽  
Farran M. Smith ◽  
Ashley M. Ballew

For many animals and insects that are experiencing dramatic population declines, the only recourse for conservationists is captive rearing. To ensure success, reared individuals should be biologically indistinct from those in the wild. We tested if this is true with monarch butterflies, Danaus plexippus , which are increasingly being reared for release by citizens and commercial breeders. Since late-summer monarchs should be as migration capable as possible for surviving the arduous long-distance migration, we evaluated four migration-relevant traits across two groups of captive-reared monarchs ( n = 41 and 42) and one group of wild-caught migrants ( n = 41). Monarchs (descendants of wild individuals) were reared from eggs to adulthood either in a warm indoor room next to a window, or in an incubator that mimicked late-summer conditions. Using an apparatus consisting of a perch mounted to an electronic force gauge, we assessed ‘grip strength' of all groups, then used image analysis to measure forewing size, pigmentation and elongation. In three of the four traits, reared monarchs underperformed compared to wild ones, even those reared under conditions that should have produced migration-ready individuals. The average strength of reared monarchs combined was 56% less than the wild group, even when accounting for size. Their orange wing colour was paler (an indicator of poor condition and flight ability) and their forewings were less elongated (elongation is associated with migration propensity) than wild monarchs. The reason(s) behind these effects is unknown but could stem from the frequent disturbance and/or handling of reared monarchs, or the fact that rearing removes the element of natural selection from all stages. Regardless, these results explain prior tagging studies that showed reared monarchs have lower migratory success compared to wild.


2019 ◽  
Vol 116 (29) ◽  
pp. 14671-14676 ◽  
Author(s):  
Ayşe Tenger-Trolander ◽  
Wei Lu ◽  
Michelle Noyes ◽  
Marcus R. Kronforst

The annual migration of the monarch butterfly Danaus plexippus is in peril. In an effort to aid population recovery, monarch enthusiasts across North America participate in a variety of conservation efforts, including captive rearing and release of monarch butterflies throughout the summer and autumn. However, the impact of captive breeding on monarchs remains an open question. Here, we show that captive breeding, both commercially and by summertime hobbyists, causes migratory behavior to be lost. Monarchs acquired commercially failed to orient south when reared outdoors in the autumn, unlike wild-caught North American monarchs, yet they did enter reproductive diapause. The commercial population was genetically highly divergent from wild-caught North American monarchs and had rounder forewings, similar to monarchs from nonmigratory populations. Furthermore, rearing wild-caught monarchs in an indoor environment mimicking natural migration-inducing conditions failed to elicit southward flight orientation. In fact, merely eclosing indoors after an otherwise complete lifecycle outdoors was enough to disrupt southern orientation. Our results provide a window into the complexity—and remarkable fragility—of migration.


2020 ◽  
Author(s):  
Patrick Anthony Guerra ◽  
Stephen Matter

Abstract BackgroundIndividuals of many species that perform annual long-distance migrations are capable of stopping at specific overwintering destinations, despite having not been there before. The iconic monarch butterfly (Danaus plexippus) and its annual long-distance fall migration is a famous example of this phenomenon. During the fall, Eastern North American monarch butterflies use various compass mechanisms to properly orient their flight southwards, in order to leave their summer breeding grounds in Southern Canada and the Northern United States, and reach their overwintering sites in Central Mexico. It remains a mystery, however, how monarchs locate and stop at these specific, consistent overwintering sites, especially since these individuals are on their maiden voyage. MethodsWe test the hypothesis that fall migrant monarchs locate these overwintering sites by using an innate, inherited map sense based on sensing and responding to specific geomagnetic signatures that are correlated with the overwintering sites. Using a natural displacement approach, we examined if the locations of overwintering sites and the abundance of monarchs at them, changes with the natural shift of the Earth’s magnetic field over time (2004-2018).ResultsWe found that despite the natural displacement of the geomagnetic field over the years, the locations of the overwintering sites and monarch abundance were unaffected. For example, fall monarchs continued to overwinter at the most southern sites in Mexico, even when the geomagnetic coordinates associated with these sites would have shifted north due to the natural shift of the Earth’s magnetic field, placing these sites significantly outside the range of the overwintering area.ConclusionsOur results suggest that monarchs do not employ a map sense based on geomagnetic cues for finding their overwintering sites, and might instead use other mechanisms or strategies for locating them (potentially using localized sensory cues) once they are near or have arrived in Central Mexico. We suggest that future work should now focus on understanding what these cue parameters are, in order to inform conservation efforts that are aimed at protecting the threatened monarch butterfly and preserving its annual long-distance migration.


2020 ◽  
Vol 11 (2) ◽  
pp. 494-506
Author(s):  
Pearson A. McGovern ◽  
Kurt A. Buhlmann ◽  
Brian D. Todd ◽  
Clinton T. Moore ◽  
J. Mark Peaden ◽  
...  

Abstract Captive-rearing conservation programs focus primarily on maximizing postrelease survival. Survival increases with size in a variety of taxa, often leading to the use of enhanced size as a means to minimize postrelease losses. Head-starting is a specific captive-rearing approach used to accelerate growth in captivity prior to release in the wild. We explored the effect of size at release, among other potential factors, on postrelease survival in head-started Mojave desert tortoises Gopherus agassizii. Juvenile tortoises were reared for different durations of captivity (2–7 y) and under varying husbandry protocols, resulting in a wide range of juvenile sizes (68–145 mm midline carapace length) at release. We released all animals (n = 78) in the Mojave National Preserve, California, United States, on 25 September 2018. Release size and surface activity were the only significant predictors of fate during the first year postrelease. Larger sized head-starts had higher predicted survival rates when compared with smaller individuals. This trend was also observed in animals of the same age but reared under different protocols, suggesting that accelerating the growth of head-started tortoises may increase efficiency of head-starting programs without decreasing postrelease success. Excluding five missing animals, released head-starts had 82.2% survival in their first year postrelease (September 2018–September 2019), with all mortalities resulting from predation. No animals with >90-mm midline carapace length were predated by ravens. Our findings suggest the utility of head-starting may be substantially improved by incorporating indoor rearing to accelerate growth. Target release size for head-started chelonians will vary among head-start programs based on release site conditions and project-specific constraints.


2020 ◽  
Vol 287 (1932) ◽  
pp. 20201326
Author(s):  
Ayşe Tenger-Trolander ◽  
Marcus R. Kronforst

Captive rearing of monarch butterflies is a commercial and personal pursuit enjoyed by many different groups and individuals. However, the practice remains controversial, especially after new evidence showed that both a group of commercially derived monarchs reared outdoors and a group of wild-derived but indoor-reared monarchs failed to orient south, unlike wild-derived monarchs reared outdoors. To more fully characterize the mechanisms responsible for the loss of orientation in both commercial and indoor-reared monarchs, we performed flight simulator experiments to determine (i) whether any fraction of commercial monarchs maintains a southern heading over multiple tests, and (ii) whether indoor conditions with the addition of sunlight can induce southern flight in wild-derived monarchs. Commercial monarchs changed their flight direction more often over the course of multiple tests than wild-derived monarchs. While as a group the commercial monarchs did not fly south on average, a subset of individuals did orient south over multiple tests, potentially explaining the discordance between flight simulator assays and the recovery of tagged commercial monarchs at overwintering locations. We also show that even when raised indoors with sunlight, wild-derived monarchs did not consistently orient south in the flight simulator, though wild-derived monarchs reared outdoors did orient south.


Sign in / Sign up

Export Citation Format

Share Document