scholarly journals Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore

2016 ◽  
Vol 42 (12) ◽  
pp. 1212-1225 ◽  
Author(s):  
Nurmi Pangesti ◽  
Michael Reichelt ◽  
Judith E. van de Mortel ◽  
Eleni Kapsomenou ◽  
Jonathan Gershenzon ◽  
...  
2003 ◽  
Vol 16 (10) ◽  
pp. 851-858 ◽  
Author(s):  
Annalisa Iavicoli ◽  
Emmanuel Boutet ◽  
Antony Buchala ◽  
Jean-Pierre Métraux

Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), and CHA89 (HCN, DAPG- and pyoluteorin deficient). Only mutations interfering with DAPG production led to a significant decrease in ISR to Peronospora parasitica. Thus, DAPG production in Pseudomonas fluorescens is required for the induction of ISR to Peronospora parasitica. DAPG is known for its antibiotic activity; however, our data indicate that one action of DAPG could be due to an effect on the physiology of the plant. DAPG at 10 to 100 μM applied to roots of Arabidopsis mimicked the ISR effect. CHA0r-mediated ISR was also tested in various Arabidopsis mutants and transgenic plants: NahG (transgenic line degrading salicylic acid [SA]), sid2-1 (nonproducing SA), npr1-1 (non-expressing NPR1 protein), jar1-1 (insensitive to jasmonic acid and methyl jasmonic acid), ein2-1 (insensitive to ethylene), etr1-1 (insensitive to ethylene), eir1-1 (insensitive to ethylene in roots), and pad2-1 (phytoalexin deficient). Only jar1-1, eir1-1, and npr1-1 mutants were unable to undergo ISR. Sensitivity to jasmonic acid and functional NPR1 and EIR1 proteins were required for full expression of CHA0r-mediated ISR. The requirements for ISR observed in this study in Peronospora parasitica induced by Pseudomonas fluorescens CHA0r only partially overlap with those published so far for Peronospora parasitica, indicating a great degree of flexibility in the molecular processes leading to ISR.


2020 ◽  
Vol 33 (12) ◽  
pp. 1424-1437
Author(s):  
Chuanhong Bian ◽  
Yabing Duan ◽  
Jueyu Wang ◽  
Qian Xiu ◽  
Jianxin Wang ◽  
...  

Validamycin A (VMA) is an aminoglycoside antibiotic used to control rice sheath blight. Although it has been reported that VMA can induce the plant defense responses, the mechanism remains poorly understood. Here, we found that reactive oxygen species (ROS) bursts and callose deposition in Arabidopsis thaliana, rice (Oryza sativa L.), and wheat (Triticum aestivum L.) were induced by VMA and were most intense with 10 μg of VMA per milliliter at 24 h. Moreover, we showed that VMA induced resistance against Pseudomonas syringae, Botrytis cinerea, and Fusarium graminearum in Arabidopsis leaves, indicating that VMA induces broad-spectrum disease resistance in both dicots and monocots. In addition, VMA-mediated resistance against P. syringae was not induced in NahG transgenic plants, was partially decreased in npr1 mutants, and VMA-mediated resistance to B. cinerea was not induced in npr1, jar1, and ein2 mutants. These results strongly indicated that VMA triggers plant defense responses to both biotrophic and necrotrophic pathogens involved in salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) signaling pathways and is dependent on NPR1. In addition, transcriptome analysis further revealed that VMA regulated the expression of genes involved in SA, JA/ET, abscisic acid (ABA), and auxin signal pathways. Taken together, VMA induces systemic resistance involving in SA and JA/ET signaling pathways and also exerts a positive influence on ABA and auxin signaling pathways. Our study highlights the creative application of VMA in triggering plant defense responses against plant pathogens, providing a valuable insight into applying VMA to enhance plant resistance and reduce the use of chemical pesticides. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2005 ◽  
Vol 95 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Michal Shoresh ◽  
Iris Yedidia ◽  
Ilan Chet

Trichoderma spp. are effective biocontrol agents for a number of soilborne plant pathogens, and some are also known for their ability to enhance plant growth. It was recently suggested that Trichoderma also affects induced systemic resistance (ISR) mechanism in plants. Analysis of signal molecules involved in defense mechanisms and application of specific inhibitors indicated the involvement of jasmonic acid and ethylene in the protective effect conferred by Trichoderma spp. against the leaf pathogen Pseudomonas syringae pv. lachrymans. Moreover, examination of local and systemic gene expression by real-time reverse transcription-polymerase chain reaction analysis revealed that T. asperellum (T203) modulates the expression of genes involved in the jasmonate/ethylene signaling pathways of ISR (Lox1, Pal1, ETR1, and CTR1) in cucumber plants. We further showed that a subsequent challenge of Trichoderma-preinoculated plants with the leaf pathogen P. syringae pv. lachrymans resulted in higher systemic expression of the pathogenesisrelated genes encoding for chitinase 1, β-1,3-glucanase, and peroxidase relative to noninoculated, challenged plants. This indicates that Trichoderma induced a potentiated state in the plant enabling it to be more resistant to subsequent pathogen infection.


MedChemComm ◽  
2016 ◽  
Vol 7 (9) ◽  
pp. 1849-1857 ◽  
Author(s):  
Kang Chang ◽  
Yanxia Shi ◽  
Jianqin Chen ◽  
Zenghui He ◽  
Zheng Xu ◽  
...  

A series of novel plant activators possessing a pyrrolidone scaffold was developed with the help of SHAFTS.


2001 ◽  
Vol 125 (2) ◽  
pp. 652-661 ◽  
Author(s):  
Jurriaan Ton ◽  
Sylke Davison ◽  
Saskia C.M. Van Wees ◽  
L.C. Van Loon ◽  
Corné M.J. Pieterse

2018 ◽  
pp. 143-152 ◽  
Author(s):  
Ebrahim SABBAGH ◽  
Seyed Kazem SABBAGH ◽  
Naser PANJEHKEH ◽  
Hamid Reza BOLOK-YAZDI

Sign in / Sign up

Export Citation Format

Share Document