Three-Dimensional Simulation of a Vibrofluidized Bed with the Use of a Two-Fluid Model of Granular Gas

2016 ◽  
Vol 89 (6) ◽  
pp. 1459-1465
Author(s):  
E. S. Kamenetskii ◽  
N. S. Orlova ◽  
A. M. Tagirov ◽  
M. V. Volik
Author(s):  
Takeharu Misawa ◽  
Hiroyuki Yoshida ◽  
Hidesada Tamai ◽  
Kazuyuki Takase

The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall.


Author(s):  
Fre´de´ric Dias ◽  
Denys Dutykh ◽  
Jean-Michel Ghidaglia

The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.


Sign in / Sign up

Export Citation Format

Share Document