Multiplier Rules and Saddle-Point Theorems for Helbig’s Approximate Solutions in Convex Pareto Problems

2005 ◽  
Vol 32 (3) ◽  
pp. 367-383 ◽  
Author(s):  
César Gutiérrez ◽  
Bienvenido Jiménez ◽  
Vicente Novo
2019 ◽  
Vol 14 (7) ◽  
pp. 1711-1730 ◽  
Author(s):  
Xiang-Kai Sun ◽  
Kok Lay Teo ◽  
Jing Zeng ◽  
Xiao-Le Guo

1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


Author(s):  
Alexander D. Bekman ◽  
Sergey V. Stepanov ◽  
Alexander A. Ruchkin ◽  
Dmitry V. Zelenin

The quantitative evaluation of producer and injector well interference based on well operation data (profiles of flow rates/injectivities and bottomhole/reservoir pressures) with the help of CRM (Capacitance-Resistive Models) is an optimization problem with large set of variables and constraints. The analytical solution cannot be found because of the complex form of the objective function for this problem. Attempts to find the solution with stochastic algorithms take unacceptable time and the result may be far from the optimal solution. Besides, the use of universal (commercial) optimizers hides the details of step by step solution from the user, for example&nbsp;— the ambiguity of the solution as the result of data inaccuracy.<br> The present article concerns two variants of CRM problem. The authors present a new algorithm of solving the problems with the help of “General Quadratic Programming Algorithm”. The main advantage of the new algorithm is the greater performance in comparison with the other known algorithms. Its other advantage is the possibility of an ambiguity analysis. This article studies the conditions which guarantee that the first variant of problem has a unique solution, which can be found with the presented algorithm. Another algorithm for finding the approximate solution for the second variant of the problem is also considered. The method of visualization of approximate solutions set is presented. The results of experiments comparing the new algorithm with some previously known are given.


Sign in / Sign up

Export Citation Format

Share Document