scholarly journals Impact of Food Availability, Pathogen Exposure, and Genetic Diversity on Thermoregulation in Honey Bees (Apis mellifera)

2014 ◽  
Vol 27 (4) ◽  
pp. 527-539 ◽  
Author(s):  
M. Simone-Finstrom ◽  
B. Foo ◽  
D. R. Tarpy ◽  
P. T. Starks
2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8280
Author(s):  
Amin Eimanifar ◽  
Johanna T. Pieplow ◽  
Alireza Asem ◽  
James D. Ellis

Apis mellifera scutellata and Apis mellifera capensis, two native subspecies of western honey bees in the Republic of South Africa (RSA), are important to beekeepers in their native region because beekeepers use these bees for honey production and pollination purposes. Additionally, both bees are important invasive pests outside of their native ranges. Recently, whole mitogenome sequencing and single nucleotide polymorphisms were used to study their genetic diversity. To add to our knowledge of the molecular ecology of both bees, we tested the ability of microsatellites to be used as a tool to discriminate between A.m. capensis and A.m. scutellata. We analyzed the genetic variability and overall population structure of both bee subspecies and hybrids of the two by genotyping individuals collected from RSA (N = 813 bees from 75 apiaries) at 19 microsatellite DNA loci. Overall, populations averaged between 9.2 and 11.3 alleles per locus, with unbiased heterozygosity values ranging from 0.81 to 0.86 per population. Bayesian clustering analyses revealed two distinct evolutionary units, though the results did not match those of earlier morphometric and molecular analyses. This suggests that the microsatellites we tested were not sufficient for subspecies identification purposes, especially for Cape and hybrid bees. Nevertheless, the microsatellite data highlight the considerable genetic diversity within both populations and a larger-than-expected hybridization zone between the natural distributions of A.m. capensis and A.m. scutellata.


Apidologie ◽  
2020 ◽  
Vol 51 (5) ◽  
pp. 802-814
Author(s):  
Juliana Rangel ◽  
Brenna Traver ◽  
Marla Stoner ◽  
Alyssa Hatter ◽  
Brian Trevelline ◽  
...  

Apidologie ◽  
2015 ◽  
Vol 47 (5) ◽  
pp. 679-687 ◽  
Author(s):  
Allen L. Szalanski ◽  
Amber D. Tripodi ◽  
Clinton E. Trammel ◽  
Danielle Downey

2013 ◽  
pp. 59-63
Author(s):  
Erika Zakar ◽  
Edit Zajácz ◽  
Tímea Rácz ◽  
János Oláh ◽  
András Jávor ◽  
...  

The honey bees are essential for the pollination of agricultural plants. The Pannonian honey bee, Apis mellifera pannonica, is native to Hungary, only these subspecies are being bread in our country. The parameters have been separated the pannon and italian honey bee subspecies, the colour of tergit, the cubital index and proboscis length. The morphometric analisys is of special importance because this, on the one hand, shows correlation with honey bee production and on the other hand, the pure morphometric charactersitics is the basis of any potential honey bee export. Mitochondrial DNA and microsatellites are the common methods to define genetic diversity and the separation of subspecies.


2020 ◽  
Vol 12 (12) ◽  
pp. 2535-2551
Author(s):  
Melanie Parejo ◽  
David Wragg ◽  
Dora Henriques ◽  
Jean-Daniel Charrière ◽  
Andone Estonba

Abstract Historical specimens in museum collections provide opportunities to gain insights into the genomic past. For the Western honey bee, Apis mellifera L., this is particularly important because its populations are currently under threat worldwide and have experienced many changes in management and environment over the last century. Using Swiss Apis mellifera mellifera as a case study, our research provides important insights into the genetic diversity of native honey bees prior to the industrial-scale introductions and trade of non-native stocks during the 20th century—the onset of intensive commercial breeding and the decline of wild honey bees following the arrival of Varroa destructor. We sequenced whole-genomes of 22 honey bees from the Natural History Museum in Bern collected in Switzerland, including the oldest A. mellifera sample ever sequenced. We identify both, a historic and a recent migrant, natural or human-mediated, which corroborates with the population history of honey bees in Switzerland. Contrary to what we expected, we find no evidence for a significant genetic bottleneck in Swiss honey bees, and find that genetic diversity is not only maintained, but even slightly increased, most probably due to modern apicultural practices. Finally, we identify signals of selection between historic and modern honey bee populations associated with genes enriched in functions linked to xenobiotics, suggesting a possible selective pressure from the increasing use and diversity of chemicals used in agriculture and apiculture over the last century.


Sign in / Sign up

Export Citation Format

Share Document