intragenomic conflict
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 1)

PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001514
Author(s):  
Eduardo P. C. Rocha ◽  
David Bikard

Prokaryotes have numerous mobile genetic elements (MGEs) that mediate horizontal gene transfer (HGT) between cells. These elements can be costly, even deadly, and cells use numerous defense systems to filter, control, or inactivate them. Recent studies have shown that prophages, conjugative elements, their parasites (phage satellites and mobilizable elements), and other poorly described MGEs encode defense systems homologous to those of bacteria. These constitute a significant fraction of the repertoire of cellular defense genes. As components of MGEs, these defense systems have presumably evolved to provide them, not the cell, adaptive functions. While the interests of the host and MGEs are aligned when they face a common threat such as an infection by a virulent phage, defensive functions carried by MGEs might also play more selfish roles to fend off other antagonistic MGEs or to ensure their maintenance in the cell. MGEs are eventually lost from the surviving host genomes by mutational processes and their defense systems can be co-opted when they provide an advantage to the cell. The abundance of defense systems in MGEs thus sheds new light on the role, effect, and fate of the so-called “cellular defense systems,” whereby they are not only merely microbial defensive weapons in a 2-partner arms race, but also tools of intragenomic conflict between multiple genetic elements with divergent interests that shape cell fate and gene flow at the population level.


2021 ◽  
Vol 55 (1) ◽  
pp. 401-425
Author(s):  
Cara L. Brand ◽  
Mia T. Levine

Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat–packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.


2021 ◽  
Author(s):  
Eduardo P. C. Rocha ◽  
David Bikard

Prokaryotes have numerous mobile genetic elements (MGE) that mediate horizontal gene transfer between cells. These elements can be costly, even deadly, and cells use numerous defense systems to filter, control or inactivate them. Surprisingly, many phages, conjugative plasmids, and their parasites, phage satellites or mobilizable plasmids, encode defense systems homologous to those of bacteria. They constitute a significant fraction of the systems found in bacterial genomes. As components of MGEs, they have presumably evolved to provide them, not the cell, adaptive functions that may be defensive, offensive, or both. This sheds new light on the role, effect, and fate of the so called “cellular defense systems”, whereby they are not merely microbial defensive weapons in a two-partner arms race, but tools of intragenomic conflict between multiple genetic elements with divergent interests. It also raises many intriguing questions.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1859
Author(s):  
Graciela Esther González ◽  
Lidia Poggio

In maize, we studied the causes of genome size variation and their correlates with cultivation altitude that suggests the existence of adaptive clines. To discuss the biological role of the genome size variation, we focused on Bolivian maize landraces growing along a broad altitudinal range. These were analyzed together with previously studied populations from altitudinal clines of Northwestern Argentina (NWA). Bolivian populations exhibited numerical polymorphism for B chromosomes (Bs) (from 1 to 5), with frequencies varying from 16.6 to 81.8 and being positively correlated with cultivation altitude. The 2C values of individuals 0B (A-DNA) ranged between 4.73 and 7.71 pg, with 58.33% of variation. The heterochromatic knobs, detected by DAPI staining, were more numerous and larger in individuals 0B than in those with higher doses of Bs. Bolivian and NWA landraces exhibited the same pattern of A-DNA downsizing and fewer and smaller knobs with increasing cultivation altitude, suggesting a mechanistic link among heterochromatin, genome size and phenology. The negative association between the two types of supernumerary DNA (knob heterochromatin and Bs), mainly responsible for the genome size variation, may be considered as an example of intragenomic conflict. It could be postulated that the optimal nucleotype is the result of such conflict, where genome adjustment may lead to an appropriate length of the vegetative cycle for maize landraces growing across altitudinal clines.


Author(s):  
Santiago Herrera-Álvarez ◽  
Elinor Karlsson ◽  
Oliver A Ryder ◽  
Kerstin Lindblad-Toh ◽  
Andrew J Crawford

Abstract Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world’s largest living rodent. We found that the genome-wide ratio of non-synonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly-neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling post-natal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (10) ◽  
pp. e1009155
Author(s):  
András Szilágyi ◽  
Viktor Péter Kovács ◽  
Eörs Szathmáry ◽  
Mauro Santos

Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes.


Sign in / Sign up

Export Citation Format

Share Document