quantized vortices
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 27)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 258 ◽  
pp. 10008
Author(s):  
Oleg Teryaev ◽  
Valentin Zakharov

The interplay between classical vorticity being the main undisputed source of polarization in heavy-ion collisions (HIC) and quantized vortices is considered. The vortex tubes emerging in the rotating pionic (super) fluid polarize the baryons in their cores and explain the emerging global polarization. The appearance of vortices in the region separating participants and spectators in non-central HIC is similar to that for sliding layers of liquid helium. From the other side, it is also the region where the classical vorticity was earlier found to be large forming the vortex sheets. The formation of tubes manifests a threshold at certain critical vorticity implying the vanishing polarization at lower energies. For central HIC the compact jet-like flows may lead to formation of vortex rings related to local polarization. The P-odd momentum correlations for their experimental investigation are suggested. The role of shear and viscosity in the emergence of polarization is discussed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Y. Xiao ◽  
M. O. Borgh ◽  
L. S. Weiss ◽  
A. A. Blinova ◽  
J. Ruostekoski ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Y. Xiao ◽  
M. O. Borgh ◽  
L. S. Weiss ◽  
A. A. Blinova ◽  
J. Ruostekoski ◽  
...  

AbstractQuantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.


In this paper, we will discuss shortly a nonlinear cosmology model inspired by analogy between cosmology phenomena and low temperature physics, especially superfluid vortices dynamics. We described: (a) a nonlinear cosmology model based on Navier-Stokes turbulence equations, which then they are connected to superfluid turbulence, and (b) the superfluid turbulence can lead to superfluid quantized vortices, which can be viewed as large scale version of Bohr’s quantization rule, and (c) this superfluid quantized vortice interpretation of Bohr’s rule allow us to predict quantization of planetary orbits in solar system including new possible orbits beyond Pluto. This paper is intended as a retrospect of what happened after the publication of earlier papers, and also some related ideas we developed since that time. In the second section we also discuss a recent development in matter-creation hypothesis, by virtue of unmatter concept and its extension. It is our hope that the new proposed view will inspire younger physicists and cosmologists to develop more realistic nonlinear cosmology models. And although some of our predictions since 2004 have come to observed data, we also hope the ideas presented here can be further verified with observation data.


2021 ◽  
Vol 118 (6) ◽  
pp. e2021957118
Author(s):  
Yuan Tang ◽  
Shiran Bao ◽  
Wei Guo

Generic scaling laws, such as Kolmogorov’s 5/3 law, are milestone achievements of turbulence research in classical fluids. For quantum fluids such as atomic Bose–Einstein condensates, superfluid helium, and superfluid neutron stars, turbulence can also exist in the presence of a chaotic tangle of evolving quantized vortex lines. However, due to the lack of suitable experimental tools to directly probe the vortex-tangle motion, so far little is known about possible scaling laws that characterize the velocity correlations and trajectory statistics of the vortices in quantum-fluid turbulence, i.e., quantum turbulence (QT). Acquiring such knowledge could greatly benefit the development of advanced statistical models of QT. Here we report an experiment where a tangle of vortices in superfluid 4He are decorated with solidified deuterium tracer particles. Under experimental conditions where these tracers follow the motion of the vortices, we observed an apparent superdiffusion of the vortices. Our analysis shows that this superdiffusion is not due to Lévy flights, i.e., long-distance hops that are known to be responsible for superdiffusion of random walkers. Instead, a previously unknown power-law scaling of the vortex–velocity temporal correlation is uncovered as the cause. This finding may motivate future research on hidden scaling laws in QT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomasz Karpiuk ◽  
Marek Nikołajuk ◽  
Mariusz Gajda ◽  
Mirosław Brewczyk

AbstractWe study the final stages of the evolution of a binary system consisted of a black hole and a white dwarf star. We implement the quantum hydrodynamic equations and carry out numerical simulations. As a model of a white dwarf star we consider a zero temperature droplet of attractively interacting degenerate atomic bosons and spin-polarized atomic fermions. Such mixtures are investigated experimentally nowadays. We find that the white dwarf star is stripped off its mass while passing the periastron. Due to nonlinear effects, the accretion disk originated from the white dwarf becomes fragmented and the onset of a quantum turbulence with giant quantized vortices present in the bosonic component of the accretion disk is observed. The binary system ends its life in a spectacular way, revealing quantum features underlying the white dwarf star’s structure. We find a charged mass, falling onto a black hole, could be responsible for recently discovered ultraluminous X-ray bursts. The simulations show that final passage of a white dwarf near a black hole can cause a gamma-ray burst.


2021 ◽  
Vol 52 (3) ◽  
pp. 25-27
Author(s):  
Carlo F. Barenghi ◽  
Ladislav Skrbek

Quantum turbulence, which manifests itself via a tangle of quantized vortices, occurs in quantum fluids, whose properties depend on quantum physics rather than classical physics. Here we report on two limiting forms of quantum turbulence which have been identified and how two-dimensional turbulence, until recently a mathematical idealization, has become experimental reality.


Sign in / Sign up

Export Citation Format

Share Document