Investigations on Thermomagnetic Properties of YbFe2As2

Author(s):  
Mahmoud. A. Hamad ◽  
O. M. Hemeda ◽  
Hatem R. Alamri ◽  
Ashraf M. Mohamed
1982 ◽  
Vol 60 (5) ◽  
pp. 679-686 ◽  
Author(s):  
R. Fletcher

This paper provides a brief survey of the experimental and theoretical situation regarding the galvano- and thermomagnetic properties of potassium viewed within the context of the behaviour of other metals. Most of the data are consistent with various sample imperfections as being the major source of the anomalies that are found. However, the precise nature of the imperfections and the mechanism by which the imperfections produce the anomalies are not yet known. It is argued that the recently discovered detailed structure in the high field induced torque of K should be subjected to intensive experimental investigation before drawing any conclusions with regards to the possible presence of a charge density wave; the other magnetotransport properties offer little evidence either for or against such a possibility.


2008 ◽  
Vol 354 (32) ◽  
pp. 3858-3863 ◽  
Author(s):  
J. Torrens-Serra ◽  
S. Roth ◽  
J. Rodriguez-Viejo ◽  
M.T. Clavaguera-Mora

2016 ◽  
Vol 94 (5) ◽  
Author(s):  
Alejandro Ayala ◽  
C. A. Dominguez ◽  
L. A. Hernández ◽  
M. Loewe ◽  
Alfredo Raya ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1704
Author(s):  
Cynthia N. Hernández-Téllez ◽  
Ana G. Luque-Alcaraz ◽  
Maribel Plascencia-Jatomea ◽  
Hiram J. Higuera-Valenzuela ◽  
Mabeth Burgos-Hernández ◽  
...  

In this research, we conducted a systematic evaluation of the synthesis parameters of a multi-responsive core-shell nanocomposite (Fe3O4 nanoparticles coated by poly(N-isopropylacrylamide) (PNIPAM) in the presence of chitosan (CS) (Fe3O4@PNIPAM-CS). Scanning electron microscopy (SEM) was used to follow the size and morphology of the nanocomposite. The functionalization and the coating of Fe3O4 nanoparticles (Nps) were evaluated by the ζ-potential evolution and Fourier Transform infrared spectroscopy (FTIR). The nanocomposite exhibited a collapsed structure when the temperature was driven above the lower critical solution temperature (LCST), determined by dynamic light scattering (DLS). The LCST was successfully shifted from 33 to 39 °C, which opens the possibility of using it in physiological systems. A magnetometry test was performed to confirm the superparamagnetic behavior at room temperature. The obtained systems allow the possibility to control specific properties, such as particle size and morphology. Finally, we performed vincristine sulfate loading and release tests. Mathematical analysis reveals a two-stage structural-relaxation release model beyond the LCST. In contrast, a temperature of 25 °C promotes the diffusional release model. As a result, a more in-depth comprehension of the release kinetics was achieved. The synthesis and study of a magnetic core-shell nanoplatform offer a smart material as an alternative targeted release therapy due to its thermomagnetic properties.


2019 ◽  
Vol 473 ◽  
pp. 324-330
Author(s):  
Ahmed Nagy ◽  
Tarek Hammad ◽  
Sherif Yehia ◽  
Samy H. Aly

2013 ◽  
Vol 9 (1) ◽  
pp. 433-446 ◽  
Author(s):  
P. S. Minyuk ◽  
T. V. Subbotnikova ◽  
L. L. Brown ◽  
K. J. Murdock

Abstract. Vivianite, a hydrated iron phosphate, is abundant in sediments of Lake El'gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Russia (67°30′ N, 172°05′ E). Magnetic measurements, including mass-specific low-field AC magnetic susceptibility, field-dependent magnetic susceptibility, hysteresis parameters, temperature dependence of the induced magnetization, as well as susceptibility in different heating media, provide ample information on vivianite nodules. Electron microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic minerals. Vivianite nodules are abundant in both sediments of cold (anoxic) and warm (oxic) stages. Magnetic susceptibility of the nodules varies from 0.78 × 10−6 m3 kg−1 to 1.72 × 10−6 m3 kg−1 (average = 1.05 × 10−6 m3 kg−1) and is higher than the susceptibility of sediments from the cold intervals. Magnetic properties of vivianite are due to the respective product of oxidation as well as sediment and mineral inclusions. Three types of curves for high-temperature dependent susceptibility of vivianite indicate different degrees of oxidation and inclusions in the nodules. Vivianite acts as a reductant and reduces hematite to magnetite and masks the goethite–hematite transition during heating. Heating vivianite and sulfur mixtures stimulates the formation of monoclinic pyrrhotite. An additive of arsenic inhibits the formation of magnetite prior to its Curie temperature. Heating selective vivianite and pyrite mixtures leads to formation of several different minerals – magnetite, monoclinic pyrrhotite, and hexagonal pyrrhotite, and makes it difficult to interpret the thermomagnetic curves.


1975 ◽  
Vol 28 (2) ◽  
pp. K167-K170 ◽  
Author(s):  
M. M. Kaila ◽  
H. J. Goldsmid

1978 ◽  
Vol 117 (4) ◽  
pp. 784-794 ◽  
Author(s):  
M. Jeleńska ◽  
M. Kądziałko-Hofmokl ◽  
J. Kruczyk ◽  
S. A. Vincenz

Sign in / Sign up

Export Citation Format

Share Document