scholarly journals Non-Linear Filtering and Limiting in High Order Methods for Ideal and Non-Ideal MHD

2006 ◽  
Vol 27 (1-3) ◽  
pp. 507-521 ◽  
Author(s):  
H. C. Yee ◽  
B. Sjögreen
Author(s):  
André Ribeiro de Barros Aguiar ◽  
Carlos Breviglieri ◽  
Fábio Mallaco Moreira ◽  
Eduardo Jourdan ◽  
João Luiz F. Azevedo

2008 ◽  
Author(s):  
Miguel R. Visbal ◽  
Scott E. Sherer ◽  
Michael D. White

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


Author(s):  
Ravish H. Hirpara ◽  
Shambhu N. Sharma

This paper revisits the state vector of an autonomous underwater vehicle (AUV) dynamics coupled with the underwater Markovian stochasticity in the ‘non-linear filtering’ context. The underwater stochasticity is attributed to atmospheric turbulence, planetary interactions, sea surface conditions and astronomical phenomena. In this paper, we adopt the Itô process, a homogeneous Markov process, to describe the AUV state vector evolution equation. This paper accounts for the process noise as well as observation noise correction terms by considering the underwater filtering model. The non-linear filtering of the paper is achieved using the Kolmogorov backward equation and the evolution of the conditional characteristic function. The non-linear filtering equation is the cornerstone formalism of stochastic optimal control systems. Most notably, this paper introduces the non-linear filtering theory into an underwater vehicle stochastic system by constructing a lemma and a theorem for the underwater vehicle stochastic differential equation that were not available in the literature.


Sign in / Sign up

Export Citation Format

Share Document