Numerical Study of a Modified Time-Stepping θ-Scheme for Incompressible Flow Simulations

2006 ◽  
Vol 28 (2-3) ◽  
pp. 533-547 ◽  
Author(s):  
Stefan Turek ◽  
Ludmila Rivkind ◽  
Jaroslav Hron ◽  
Roland Glowinski
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Włodzimierz Wróblewski ◽  
Krzysztof Bochon ◽  
Mirosław Majkut ◽  
Krzysztof Rusin ◽  
Emad Hasani Malekshah

Purpose The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are performed with the assumption of different models. The Singhal cavitation model and the models which resolve the non-condensable gas including 2phases and 3phases are implemented in the numerical model. The calculations are performed with the uRANS model with assumption of the constant temperature of the mixture. The two-phase flow is simulated with a mixture model. The dynamics and structures of cavities are compared with literature data and experimental results. Design/methodology/approach The cavitation regime can be observed in some working conditions of turbomachines. The phase transition, which appears on the blades, is the source of high dynamic forces, noise and also can lead to the intensive erosion of the blade surfaces. The need to control this process and to prevent or reduce the undesirable effects can be fulfilled by the application of non-condensable gases to the liquid. Findings The results show that the Singhal cavitation model predicts the cavity structure and related characteristics differently with 2phases and 3phases models at low cavitation number where the cavitating flow is highly dynamic. On the other hand, the impact of dissolved air on the cloud structure and dynamic characteristic of cavitating flow is gently observable. Originality/value The originality of this paper is the evaluation of different numerical cavitation models for the prediction of dynamic characteristics of cavitating flow in the presence of air.


2013 ◽  
Vol 727 ◽  
Author(s):  
Philippe Traoré ◽  
Jian Wu

AbstractThis study refers to the article of Chicón, Castellanos & Martion (J. Fluid Mech., vol. 344, 1997, pp. 43–66), who presented a numerical study of electroconvection in a layer of dielectric liquid induced by unipolar injection. An important characteristic of the numerical strategy proposed by Chicón et al. lies in the fact that the Navier–Stokes equations are never solved to obtain the velocity field, which is subsequently needed in the charge density transport equation. Instead, the velocity field is explicitly provided by an expression obtained with some assumptions about the flow structure and related to the electric field (the imposed velocity field approach; IVF). The validity of the above simplification is examined through a direct comparison of the solutions obtained by solving the Navier–Stokes equations (the Navier–Stokes computation approach; NSC). It is clearly demonstrated that, even in the strong injection regime ($C= 10$), the results look very similar for a given range of the mobility parameter $M$; however, in the weak injection regime ($C= 0. 1$), significant discrepancies are observed. The rich flow structures obtained with the NSC approach invalidate the use of the IVF approach in the weak injection regime.


Author(s):  
Martin von Hoyningen-Huene ◽  
Alexander R. Jung

This paper studies different acceleration techniques for unsteady flow calculations. The results are compared with a non-accelerated, fully-explicit solution in terms of time-averaged pressure distributions, the unsteady pressure and entropy in the frequency domain and the skin friction factor. The numerical method solves the unsteady three-dimensional Navier-Stokes equations via an explicit time-stepping procedure. The flow in the first stage of a modern industrial gas turbine is chosen as a test case. After a description of the numerical method used for the simulation, the test case is introduced. The comparison of the different numerical algorithms for explicit schemes is intended to ease the decision about which acceleration technique to use for calculations as far as accuracy and computational time are concerned. The convergence acceleration methods under consideration are, respectively, explicit time-stepping with implicit residual averaging, explicit time-consistent multigrid and implicit dual time stepping. The investigation and comparison of the different acceleration techniques are applicable to all explicit unsteady flow solvers. As another point of interest, the influence of the stage blade count ratio on the flow field is investigated. For this purpose, a simulation with a stage pitch ratio of unity is compared with a calculation using the real ratio of 78:80, which requires a more sophisticated method for periodic boundary condition treatment. This paper should help to decide whether it is vital from the turbine designer’s point of view to model the real pitch ratio in unsteady flow simulations in turbine stages.


Sign in / Sign up

Export Citation Format

Share Document