Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
Latest Publications


TOTAL DOCUMENTS

96
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878583

Author(s):  
Robin W. Parry ◽  
Edward House ◽  
Matthew Stauffer ◽  
Michael Iacovelli ◽  
William J. Higgins

Development of the Northrop Grumman / Rolls-Royce WR21 Intercooled Recuperated (ICR) Gas Turbine, begun in 1992, is now well advanced and system testing has been completed on eight engine builds at the Royal Navy’s Admiralty Test House located at the Defence Evaluation and Research Agency, Pyestock in the United Kingdom. Test activity is shortly to move to the US Navy’s Test Site at the Naval Surface Warfare Center, Carderock Division – Ship Systems Engineering Station in Philadelphia, PA, where a new test facility has been built to carry out some final development testing and an endurance test. A previous paper on this subject (94-GT-186) defined a test program leading to a design review and the beginning of Qualification Testing. The development program has since evolved and it is the aim of this paper to summarize engine testing to date and set out the plan for conclusion of development testing. The paper will describe the development of the Philadelphia Test Site, as a combined site for the US Navy’s Integrated Power System (IPS) and ICR testing. This will include a description of the advanced, high-accuracy Data Acquisition System (DAS). Finally, the test program and the development and endurance test objectives will be outlined.


Author(s):  
I. N. Egorov ◽  
G. V. Kretinin ◽  
S. S. Kostiuk ◽  
I. A. Leshchenko ◽  
U. I. Babi

This paper presents the main theses of stochastic approach to the multimeasure parameters and control laws optimization for the aircraft gas-turbine engines. The methodology allows us to optimize the engines taking into account the technological deflections which inevitably take place in the process of manufacturing of the engine’s components as well as engine’s control deflections. The stochastic optimization is able to find highly robust solutions, stable to inaccuracies in technological processes. The effectiveness of the methodology is shown by example of optimization problem solution to find the control laws for the flow passage controllable elements of the 4-th generation aircraft mixed-flow turbofan engine. The use of information about the existing and advanced production technology levels during the optimization process, including some components manufacturing accuracy, allows us to considerably increase the probability of optimum solution implementation in practice. In real engine there are some components manufacturing deflections as well as control accuracy deflections. It results a certain engine’s performance deviation. An engine optimization classic deterministic approach can not take into account this circumstance, so the probability of an optimum design implementation is too low.


Author(s):  
Ken-ichi Funazaki ◽  
Nobuaki Tetsuka ◽  
Tadashi Tanuma

This paper reports on an experimental investigation of aerodynamic loss of a low-speed linear turbine cascade which is subjected to periodic wakes shed from moving bars of the wake generator. In this case, parameters related to the wake, such as wake passing frequency (wake Strouhal number) or wake turbulence characteristics, are varied to see how these wake-related parameters affect the local loss distribution or mass-averaged loss coefficient of the turbine cascade. Free-stream turbulence intensity is changed by use of a turbulence grid. In Part I of this paper a focus is placed on the measurements by use of a pneumatic five-hole yawmeter, which provides time-averaged stagnation pressure distributions downstream of the moving bars as well as of the turbine cascade. Spanwise distributions of wake-affected exit flow angle are also measured. From this study it is found that the wake passing greatly affects not only the profile loss but secondary loss of the linear cascade. Noticeable change in exit flow angle is also identified.


Author(s):  
Dong Jin Kang ◽  
Sang Soo Bae ◽  
Jae Won Kim

A Navier-Stokes simulation of the MIT flapping foil experiment is presented. The MIT experiment was designed to provide a good quality database for unsteady boundary layer flows. The unsteady boundary layer around a hydrofoil was generated by flapping two airfoils upstream of the hydrofoil. Present Navier-Stokes simulation is carried out on the entire experimental domain, including the flapping airfoils as well as the downstream fixed hydrofoil. Present Navier-Stokes code uses an unstructured finite volume method based on the SIMPLE algorithm. It uses QUICK scheme for the convective terms and the second order Euler backward differencing for time derivatives to keep second order accuracy spatially and temporally. All other spatial derivatives are approximated by using central difference scheme. All comparisons of present time averaged and unsteady solutions with the corresponding experimental data are satisfactory: all unsteady solutions are compared in terms of time mean and first harmonic. The first harmonic of the velocity shows a peak inside the boundary layer along the surfaces of the hydrofoil and has a local minimum near the edge of the boundary layer. The local minimum becomes manifest as the boundary layer grows. The unsteadiness in the free stream is transferred inside the boundary layer when an unsteady vortex impinges on the surface. The entrained unsteadiness travels with a local velocity slower than that in the free stream. This causes phase lag of the first harmonic between the free stream and the boundary layer and local minimum of the first harmonic near the edge of the boundary layer.


Author(s):  
Z. S. Spakovszky ◽  
J. B. Gertz ◽  
O. P. Sharma ◽  
J. D. Paduano ◽  
A. H. Epstein ◽  
...  

This paper presents an experimental and analytical investigation of compressor stability assessment during engine transient operation. A 2-dimensional, linear, compressible, state-space analysis of stall-inception (Feulner et al. (1996)) was modified to account for engine transients and deterioration, with the latter modeled as increased tip-clearance and flow blockage. Experiments were performed on large commercial aircraft engines in both undeteriorated and deteriorated states. Unsteady measurements of pressure in these test engines during rapid accelerations revealed the growth of pre-stall disturbances, which rotate at rotor speed and at approximately half rotor speed. These disturbances are stronger in deteriorated engines. The model showed that the signal at shaft speed was the first compressible system mode, whose frequency is near shaft speed, excited by geometric nonuniformities. The computed behavior of this mode during throttle transients closely matched engine data. The signal increased in strength as stall was approached and as the engine deteriorated. This work firmly establishes the connection between observed signals in the these engines and first principles stability models.


Author(s):  
M. B. Graf ◽  
E. M. Greitzer ◽  
F. E. Marble ◽  
O. P. Sharma

Effects of stator pressure field on upstream rotor performance in a high pressure compressor stage have been assessed using three-dimensional steady and time-accurate Reynolds-averaged Navier-Stokes computations. Emphasis was placed on: (1) determining the dominant features of the flow arising from interaction of the rotor with the stator pressure field, and (2) quantifying the overall effects on time averaged loss, blockage, and pressure rise. The time averaged results showed a 20 to 40% increase in overall rotor loss and a 10 to 50% decrease in tip clearance loss compared to an isolated rotor. The differences were dependent on the operating point and increased as the stage pressure rise, and amplitude of the unsteady back pressure variations, was increased. Motions of the tip leakage vortex on the order of the blade pitch were observed at the rotor exit in all the unsteady flow simulations; these were associated with enhanced mixing in the region. The period of the motion scaled with rotor flow-through time rather than stator passing. Three steady flow approximations for the rotor-stator interaction were assessed with reference to the unsteady computations: an axisymmetric representation of the stator pressure field, an inter-blade row averaging plane method, and a technique incorporating deterministic stresses and bodyforces associated with stator flow field. Differences between steady and unsteady predictions of overall rotor loss, tip region loss, and endwall blockage ranged from 5 to 50% of the time average, but the steady flow models gave overall rotor pressure rise and flow capacity within 5% of the time averaged values.


Author(s):  
Martin von Hoyningen-Huene ◽  
Alexander R. Jung

This paper studies different acceleration techniques for unsteady flow calculations. The results are compared with a non-accelerated, fully-explicit solution in terms of time-averaged pressure distributions, the unsteady pressure and entropy in the frequency domain and the skin friction factor. The numerical method solves the unsteady three-dimensional Navier-Stokes equations via an explicit time-stepping procedure. The flow in the first stage of a modern industrial gas turbine is chosen as a test case. After a description of the numerical method used for the simulation, the test case is introduced. The comparison of the different numerical algorithms for explicit schemes is intended to ease the decision about which acceleration technique to use for calculations as far as accuracy and computational time are concerned. The convergence acceleration methods under consideration are, respectively, explicit time-stepping with implicit residual averaging, explicit time-consistent multigrid and implicit dual time stepping. The investigation and comparison of the different acceleration techniques are applicable to all explicit unsteady flow solvers. As another point of interest, the influence of the stage blade count ratio on the flow field is investigated. For this purpose, a simulation with a stage pitch ratio of unity is compared with a calculation using the real ratio of 78:80, which requires a more sophisticated method for periodic boundary condition treatment. This paper should help to decide whether it is vital from the turbine designer’s point of view to model the real pitch ratio in unsteady flow simulations in turbine stages.


Author(s):  
Takeshi Sakida ◽  
Shinya Tanaka ◽  
Takao Mikami ◽  
Masashi Tatsuzawa ◽  
Tomoki Taoka

The CGT301 ceramic gas turbine has been developed under a contract from NEDO as a part of the New Sunshine Program of MITI since 1988 to 1998. The CGT301 is a recuperated, single-shaft ceramic gas turbine. Ceramic parts are used in the hot section of the engine, such as turbine blades, nozzle vanes, combustion liners and so on. As a primary feature of this turbine, the rotors are composed of ceramic blades inserted into metallic disks (“hybrid rotor”) for the future applicability to the large gas turbine. The R & D program consists of three phases, the model metal gas turbine, the primary type ceramic gas turbine and the pilot ceramic gas turbine. The pilot ceramic gas turbine showed etable operation at TIT of 1,350°C. This paper presents the progress in the development of the pilot ceramic gas turbine of CGT301.


Author(s):  
H. M. Saxer-Felici ◽  
A. P. Saxer ◽  
F. Ginter ◽  
A. Inderbitzin ◽  
G. Gyarmathy

The structure and propagation of rotating stall cells in a single- and a two-stage subsonic axial compressor is addressed in this paper using computational and experimental analysis. Unsteady solutions of the 2-D inviscid compressible (Euler) equations of motion are presented for one operating point in the fully-developed rotating stall regime for both a single- and a two-stage compressor. The inviscid assumption is verified by comparing the single-stage 2-D in viscid/compressible solution with an equivalent 2-D viscous (Navier-Stokes) result for incompressible flow. The structure of the rotating stall cell is analyzed and compared for the single- and two-stage cases. The numerical solutions are validated against experimental data consisting of flow visualization and unsteady row-by-row static pressure measurements obtained in a four-stage water model of a subsonic compressor. The CFD solutions supply a link between the observed experimental features and provide additional information on the structure of the stall flow. Based on this study. supporting assumptions regarding the driving mechanisms for the propagation of fully-developed rotating stall cells and their structure are postulated. In methodical respect the results suggest that the inviscid model is able to reproduce the essentials of the flow physics associated with the propagation of fully-developed, full-span rotating stall in a subsonic axial compressor.


Author(s):  
Judy Busby ◽  
Doug Sondak ◽  
Brent Staubach ◽  
Roger Davis

Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migretion effects on the turbine blade tip and outer air seal heat loads. The LDS model is obtained from an unsteady inviscid calculation. The inviscid LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. The feasibility of the inviscid LDS model is demonstrated on a single stage, three-dimensional, vane-blade turbine with a hot streak entering the vane passage at mid-pitch and mid-span. The steady viscous solution with the LDS model is compared to the time-averaged viscous, steady viscous and time-averaged inviscid computations. The LDS model reproduces the time-averaged viscous temperature distribution on the outer air seal to within 2.3%, while the steady viscous has an error of 8.4%, and the time-averaged inviscid calculation has an error of 17.2%. The solution using the LDS model is obtained at a cost in CPU time that is 26% of that required for a time-averaged viscous computation.


Sign in / Sign up

Export Citation Format

Share Document