scholarly journals Efficient Alternating Least Squares Algorithms for Low Multilinear Rank Approximation of Tensors

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Chuanfu Xiao ◽  
Chao Yang ◽  
Min Li
2019 ◽  
Vol 11 (24) ◽  
pp. 2932 ◽  
Author(s):  
Geunseop Lee

Hyperspectral imaging is widely used to many applications as it includes both spatial and spectral distributions of a target scene. However, a compression, or a low multilinear rank approximation of hyperspectral imaging data, is required owing to the difficult manipulation of the massive amount of data. In this paper, we propose an efficient algorithm for higher order singular value decomposition that enables the decomposition of a tensor into a compressed tensor multiplied by orthogonal factor matrices. Specifically, we sequentially compute low rank factor matrices from the Tucker-1 model optimization problems via an alternating least squares approach. Experiments with real world hyperspectral imaging revealed that the proposed algorithm could compute the compressed tensor with a higher computational speed, but with no significant difference in accuracy of compression compared to the other tensor decomposition-based compression algorithms.


1996 ◽  
Vol 8 (3) ◽  
pp. 133-144 ◽  
Author(s):  
María del Mar del Pozo Andrés ◽  
Jacques F A Braster

In this article we propose two research techniques that can bridge the gap between quantitative and qualitative historical research. These are: (1) a multiple regression approach that gives information about general patterns between numerical variables and the selection of outliers for qualitative analysis; (2) a homogeneity analysis with alternating least squares that results in a two-dimensional picture in which the relationships between categorical variables are graphically presented.


Sign in / Sign up

Export Citation Format

Share Document