Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation

2015 ◽  
Vol 39 (10) ◽  
Author(s):  
Meng-Hsiun Tsai ◽  
Shyr-Shen Yu ◽  
Yung-Kuan Chan ◽  
Chun-Chu Jen
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Anlay Fante ◽  
Mohammed Aliy

Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.


2016 ◽  
Vol 77 (1) ◽  
pp. 631-660 ◽  
Author(s):  
Salam Shuleenda Devi ◽  
Amarjit Roy ◽  
Joyeeta Singha ◽  
Shah Alam Sheikh ◽  
Rabul Hussain Laskar

Author(s):  
Asaad Babker ◽  
Vyacheslav Lyashenko

Objective: Our aim is to show the possibility of using different image processing techniques for blood smear analysis. Also our aim is to determine the sequence of image processing techniques to identify megaloblastic anemia cells. Methods: We consider blood smear image. We use a variety of image processing techniques to identify megaloblastic anemia cells. Among these methods, we distinguish the modification of the color space and the use of wavelets. Results: We developed a sequence of image processing techniques for blood smear image analysis and megaloblastic anemia cells identification. As a characteristic feature for megaloblastic anemia cells identification, we consider neutrophil image structure. We also use the morphological methods of image analysis in order to reveal the nuclear lobes in neutrophil structure. Conclusion: We can identify the megaloblastic anemia cells. To do this, we use the following sequence of blood smear image processing: color image modification, change of the image contrast, use of wavelets and morphological analysis of the cell structure. 


Sign in / Sign up

Export Citation Format

Share Document