An Effective Method to Inspect Adhesive Quality of Wind Turbine Blades Using Transmission Thermography

Author(s):  
Xiao-li Li ◽  
Jiangang Sun ◽  
Ning Tao ◽  
Lichun Feng ◽  
Jing-ling Shen ◽  
...  
2018 ◽  
Vol 8 (10) ◽  
pp. 2004 ◽  
Author(s):  
Hadi Sanati ◽  
David Wood ◽  
Qiao Sun

The failure of wind turbine blades is a major concern in the wind power industry due to the resulting high cost. It is, therefore, crucial to develop methods to monitor the integrity of wind turbine blades. Different methods are available to detect subsurface damage but most require close proximity between the sensor and the blade. Thermography, as a non-contact method, may avoid this problem. Both passive and active pulsed and step heating and cooling thermography techniques were investigated for different purposes. A section of a severely damaged blade and a small “plate” cut from the undamaged laminate section of the blade with holes of varying diameter and depth drilled from the rear to provide “known” defects were monitored. The raw thermal images captured by both active and passive thermography demonstrated that image processing was required to improve the quality of the thermal data. Different image processing algorithms were used to increase the thermal contrasts of subsurface defects in thermal images obtained by active thermography. A method called “Step Phase and Amplitude Thermography”, which applies a transform-based algorithm to step heating and cooling data was used. This method was also applied, for the first time, to the passive thermography results. The outcomes of the image processing on both active and passive thermography indicated that the techniques employed could considerably increase the quality of the images and the visibility of internal defects. The signal-to-noise ratio of raw and processed images was calculated to quantitatively show that image processing methods considerably improve the ratios.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

2021 ◽  
Author(s):  
Aileen G. Bowen Perez ◽  
Giovanni Zucco ◽  
Paul Weaver

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document