scholarly journals Effect of Different Surface-Charged Lamellar Materials on Swelling Properties of Nanocomposite Hydrogels

Author(s):  
Marcela Pfeifer ◽  
Flávio A. C. Andrade ◽  
Ricardo Bortoletto-Santos ◽  
Fauze A. Aouada ◽  
Caue Ribeiro
2021 ◽  
Author(s):  
Marcela Pfeifer ◽  
Flávio A. C. Andrade ◽  
Ricardo Bortoletto-Santos ◽  
Fauze A. Aouada ◽  
Caue Ribeiro

Abstract This study investigated the effect of different surface-charged lamellar materials on the swelling and diffusion properties of synthesized polyacrylamide-methylcellulose hydrogels (HG). Montmorillonite and hydrotalcite thermally activated at two different temperatures (300 and 550 ºC) were incorporated in the preparation of nanocomposite (NC) hydrogels. A series of NC hydrogels were prepared by varying the lamellar material content (1:1, 2:1 and 4:1). The results showed that the HG with hydrotalcite (550 ºC) was strongly dependent on the ionic intensity, and that the swelling degree increased by 50%, 65% and 78% with reducing the hydrotalcite content at (1:1), (2:1) and (4:1), respectively. The water absorption capacity of HG containing montmorillonite or hydrotalcite (300 ºC) was slightly affected when the pH decreased from 7 to 3. However, the pH variation from 7 to 10 increased the water absorption capacity of most HG, except those containing hydrotalcite (550 ºC) at (2:1) and (4:1). The presence of lamellar nanoparticles in hydrogels made the polymer matrix more rigid, and less likely to absorb water. In contrast, HG with hydrotalcite (550 ºC) at (2:1) and (4:1) showed anomalous behavior with an increase in their water absorption capacity. The results support that the developed NC-HG can be suitable candidates for applications as controlled released materials.


2020 ◽  
Vol 65 (2) ◽  
pp. 119-133
Author(s):  
Nesrimne SEDIIKI ◽  
◽  
Djamel ALIOUCHE ◽  
Imene BOUDHENE ◽  
◽  
...  

2015 ◽  
Vol 10 (5) ◽  
pp. 743-753 ◽  
Author(s):  
Shabnam Mohammadi ◽  
Mohsen Vafaie Sefti ◽  
Mahsa Baghban Salehi ◽  
Asefe Mousavi Moghadam ◽  
Samira Rajaee ◽  
...  

2020 ◽  
Author(s):  
Alexis Wolfel ◽  
Cecilia Inés Alvarez Igarzabal ◽  
Marcelo Ricardo Romero

<p>Design of materials with novel sensitivities and smart behaviour is important for the development of smart systems with automated responsiveness. We have recently reported the synthesis of hydrogels, cross-linked by <i>N,N'</i>-diallyltartardiamide (DAT). The covalent DAT-crosslinking points have vicinal diols which can be easily cleaved with periodate, generating valuable a-oxo-aldehyde functional groups, useful for further chemical modification. Based on those findings, we envisioned that a self-healable hydrogel could be obtained by incorporation of primary amino functional groups, from <a>2-aminoethyl methacrylate </a>hydrochloride (AEMA), coexisting with DAT into the same network. The a-oxo-aldehyde groups generated after the reaction with periodate would arise in the immediate environment of amine groups to form imine cross-links. For this purpose, DAT-crosslinked hydrogels were synthesized and carefully characterized. The cleavage of DAT-crosslinks with periodate promoted changes in the mechanical and swelling properties of the materials. As expected, a self-healing behavior was observed, based on the spontaneous formation of imine covalent bonds. In addition, we surprisingly found a combination of fast vicinal diols cleavage and a low speed self-crosslinking reaction by imine formation. Consequently, it was found a time-window in which a periodate-treated polymer was obtained in a transient liquid state, which can be exploited to choose the final shape of the material, before automated gelling. The singular properties attained on these hydrogels could be useful for developing sensors, actuators, among other smart systems.</p>


Sign in / Sign up

Export Citation Format

Share Document