scholarly journals Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

2008 ◽  
Vol 131 (6) ◽  
pp. 1067-1083 ◽  
Author(s):  
Makoto Katori ◽  
Minami Izumi ◽  
Naoki Kobayashi
2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
David W. Pravica ◽  
Njinasoa Randriampiry ◽  
Michael J. Spurr

The family ofnth orderq-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion relations and ODEs satisfied by thenth degree Legendre polynomials. Thenth orderq-Legendre polynomials are shown to have vanishingkth moments for0≤k<n, as does thenth degree truncated Legendre polynomial. Convergence results are obtained, approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of MADEs.


2013 ◽  
Vol 09 (08) ◽  
pp. 1973-1993 ◽  
Author(s):  
SHINJI FUKUHARA ◽  
YIFAN YANG

We find a basis for the space Sk(Γ1(4)) of cusp forms of weight k for the congruence subgroup Γ1(4) in terms of Eisenstein series. As an application, we obtain formulas for r2k(n), the number of ways to represent a non-negative integer n as sums of 2k integer squares.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yong-Qin Cui ◽  
Hong-Yan Xu ◽  
Na Li

The main purpose of this paper is to investigate the growth of several entire functions represented by double Dirichlet series of finite logarithmic order, h-order. Besides, we also study some properties on the maximum modulus of double Dirichlet series and its partial derivative. Our results are extension and improvement of previous results given by Huo and Liang.


1993 ◽  
Vol 16 (4) ◽  
pp. 805-810
Author(s):  
E. Elizalde ◽  
A. Romeo

We take a new approach to the generation of Jacobi theta function identities. It is complementary to the procedure which makes use of the evaluation of Parseval-like identities for elementary cylindrically-symmetric functions on computer holograms. Our method is more simple and explicit than this one, which was an outcome of the construction of neurocomputer architectures through the Heisenberg model.


2010 ◽  
Vol 147 (2) ◽  
pp. 355-374 ◽  
Author(s):  
Valentin Blomer

AbstractFor two real characters ψ,ψ′ of conductor dividing 8 define where $\chi _d = (\frac {d}{.})$ and the subscript 2 denotes the fact that the Euler factor at 2 has been removed. These double Dirichlet series can be extended to $\Bbb {C}^2$ possessing a group of functional equations isomorphic to D12. The convexity bound for Z(s,w;ψ,ψ′) is |sw(s+w)|1/4+ε for ℜs=ℜw=1/2. It is proved that Moreover, the following mean square Lindelöf-type bound holds: for any Y1,Y2≥1.


Sign in / Sign up

Export Citation Format

Share Document