scholarly journals Ruelle–Pollicott Resonances of Stochastic Systems in Reduced State Space. Part I: Theory

2020 ◽  
Vol 179 (5-6) ◽  
pp. 1366-1402 ◽  
Author(s):  
Mickaël D. Chekroun ◽  
Alexis Tantet ◽  
Henk A. Dijkstra ◽  
J. David Neelin
2020 ◽  
Vol 179 (5-6) ◽  
pp. 1403-1448 ◽  
Author(s):  
Alexis Tantet ◽  
Mickaël D. Chekroun ◽  
Henk A. Dijkstra ◽  
J. David Neelin

2021 ◽  
Vol 71 (1) ◽  
pp. 87-106
Author(s):  
Kutiš Vladimír ◽  
Paulech Juraj ◽  
Gálik Gálik ◽  
Murín Justín

Abstract The paper deals with the development of the finite element method (FEM) model of piezoelectric beam elements, where the piezoelectric layers are located on the outer surfaces of the beam core, which is made of functionally graded material. The created FEM model of piezoelectric beam structure is reduced using the modal truncation method, which is one of model order reduction (MOR) method. The results obtain from reduced state-space model are compared with results obtain from finite element model. MOR state-space model is also used in the design of the linear quadratic regulator (LQR). Created reduced state-space model with feedback with the LQR controller is analysed and compared with the results from FEM model.


2001 ◽  
Vol 11 (04) ◽  
pp. 1079-1113 ◽  
Author(s):  
SHU-MEI GUO ◽  
LEANG-SAN SHIEH ◽  
CHING-FANG LIN ◽  
JAGDISH CHANDRA

This paper presents a new state-space self-tuning control scheme for adaptive digital control of continuous-time multivariable nonlinear stochastic and chaotic systems, which have unknown system parameters, system and measurement noises, and inaccessible system states. Instead of using the moving average (MA)-based noise model commonly used for adaptive digital control of linear discrete-time stochastic systems in the literature, an adjustable auto-regressive moving average (ARMA)-based noise model with estimated states is constructed for state-space self-tuning control of nonlinear continuous-time stochastic systems. By taking advantage of a digital redesign methodology, which converts a predesigned high-gain analog tracker/observer into a practically implementable low-gain digital tracker/observer, and by taking the non-negligible computation time delay and a relatively longer sampling period into consideration, a digitally redesigned predictive tracker/observer has been newly developed in this paper for adaptive chaotic orbit tracking. The proposed method enables the development of a digitally implementable advanced control algorithm for nonlinear stochastic and chaotic hybrid systems.


2003 ◽  
Vol 10 (6) ◽  
pp. 477-491 ◽  
Author(s):  
X. Zang ◽  
P. Malanotte-Rizzoli

Abstract. The goal of this study is to compare the performances of the ensemble Kalman filter and a reduced-rank extended Kalman filter when applied to different dynamic regimes. Data assimilation experiments are performed using an eddy-resolving quasi-geostrophic model of the wind-driven ocean circulation. By changing eddy viscosity, this model exhibits two qualitatively distinct behaviors: strongly chaotic for the low viscosity case and quasi-periodic for the high viscosity case. In the reduced-rank extended Kalman filter algorithm, the model is linearized with respect to the time-mean from a long model run without assimilation, a reduced state space is obtained from a small number (100 for the low viscosity case and 20 for the high viscosity case) of leading empirical orthogonal functions (EOFs) derived from the long model run without assimilation. Corrections to the forecasts are only made in the reduced state space at the analysis time, and it is assumed that a steady state filter exists so that a faster filter algorithm is obtained. The ensemble Kalman filter is based on estimating the state-dependent forecast error statistics using Monte Carlo methods. The ensemble Kalman filter is computationally more expensive than the reduced-rank extended Kalman filter.The results show that for strongly nonlinear case, chaotic regime, about 32 ensemble members are sufficient to accurately describe the non-stationary, inhomogeneous, and anisotropic structure of the forecast error covariance and the performance of the reduced-rank extended Kalman filter is very similar to simple optimal interpolation and the ensemble Kalman filter greatly outperforms the reduced-rank extended Kalman filter. For the high viscosity case, both the reduced-rank extended Kalman filter and the ensemble Kalman filter are able to significantly reduce the analysis error and their performances are similar. For the high viscosity case, the model has three preferred regimes, each with distinct energy levels. Therefore, the probability density of the system has a multi-modal distribution and the error of the ensemble mean for the ensemble Kalman filter using larger ensembles can be larger than with smaller ensembles.


Author(s):  
Francois G. Meyer ◽  
Alexander M. Benison ◽  
Zachariah Smith ◽  
Daniel S. Barth
Keyword(s):  

2010 ◽  
Vol 2010 ◽  
pp. 1-27 ◽  
Author(s):  
Chu-Tong Wang ◽  
Jason S. H. Tsai ◽  
Chia-Wei Chen ◽  
You Lin ◽  
Shu-Mei Guo ◽  
...  

An active fault-tolerant pulse-width-modulated tracker using the nonlinear autoregressive moving average with exogenous inputs model-based state-space self-tuning control is proposed for continuous-time multivariable nonlinear stochastic systems with unknown system parameters, plant noises, measurement noises, and inaccessible system states. Through observer/Kalman filter identification method, a good initial guess of the unknown parameters of the chosen model is obtained so as to reduce the identification process time and enhance the system performances. Besides, by modifying the conventional self-tuning control, a fault-tolerant control scheme is also developed. For the detection of fault occurrence, a quantitative criterion is exploited by comparing the innovation process errors estimated by the Kalman filter estimation algorithm. In addition, the weighting matrix resetting technique is presented by adjusting and resetting the covariance matrix of parameter estimates to improve the parameter estimation for faulty system recovery. The technique can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection.


1991 ◽  
Vol 23 (2) ◽  
pp. 355-372 ◽  
Author(s):  
S. Zachary

We consider a ‘reduced state space' approach to the analysis of blocking in stochastic loss networks. We show how this approach provides insight into the approximations currently used in large networks and enables improved approximations to be deduced. We further give some ‘heavy traffic' asymptotic results for the limiting scheme of Kelly (1986).


Sign in / Sign up

Export Citation Format

Share Document