scholarly journals Critical Configurations and Tube of Typical Trajectories for the Potts and Ising Models with Zero External Field

2021 ◽  
Vol 184 (3) ◽  
Author(s):  
Gianmarco Bet ◽  
Anna Gallo ◽  
Francesca R. Nardi

AbstractWe consider the ferromagnetic q-state Potts model with zero external field in a finite volume evolving according to Glauber-type dynamics described by the Metropolis algorithm in the low temperature asymptotic limit. Our analysis concerns the multi-spin system that has q stable equilibria. Focusing on grid graphs with periodic boundary conditions, we study the tunneling between two stable states and from one stable state to the set of all other stable states. In both cases we identify the set of gates for the transition and prove that this set has to be crossed with high probability during the transition. Moreover, we identify the tube of typical paths and prove that the probability to deviate from it during the transition is exponentially small.


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jennifer Bravo ◽  
Carlos Lizama

AbstractWe show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ t 0 ≥ 0 and $M>0$ M > 0 such that $\{(im)^{\alpha }\}_{|m|> t_{0}} \subset \rho (A)$ { ( i m ) α } | m | > t 0 ⊂ ρ ( A ) , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A+(im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ ∥ ( i m ) α ( A + ( i m ) α I ) − 1 ∥ ≤ M  for all  | m | > t 0 , m ∈ Z , then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ 1 p < α ≤ 2 p and $1< p < 2$ 1 < p < 2 , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) + Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ { D t α G L u ( t ) + A u ( t ) = f ( t ) , t ∈ ( 0 , 2 π ) ; u ( 0 ) = u ( 2 π ) , where $_{GL}D^{\alpha }$ D α G L denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ f ∈ L 2 π p ( R , X ) that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ ϕ A ∈ ( 0 , α π / 2 ) and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ ∫ 0 2 π f ( t ) d t ∈ Ran ( A ) .



Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.



Sign in / Sign up

Export Citation Format

Share Document