Robust Time-Optimal Guidance in a Partially Uncertain Time-Varying Flow-Field

2018 ◽  
Vol 179 (1) ◽  
pp. 240-264 ◽  
Author(s):  
Jhanani Selvakumar ◽  
Efstathios Bakolas
2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan

Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


Author(s):  
Hongqian Zhao ◽  
Honghua Dai ◽  
Zhaohui Dang

In this paper, a novel multi-stage trajectory transfer and fixed-point landing time optimal guidance method for the lunar surface emergency rescue mission is proposed. Firstly, the whole process motion and dynamics model for the lunar surface emergency rescue with four stages are established. Then, in the initial orbit transfer phase, the Lambert algorithm based on "prediction + correction" is designed for the non spherical gravitational perturbation of the moon. In the powered descent phase, the Hamiltonian function is used to design a time suboptimal explicit guidance law that can be applied in orbit in real time. Finally, aiming at the multi-stage global time optimal guidance, the whole time process guidance law is obtained by establishing the allowable control set for each stage in the whole process. The simulation results show that compared with the piecewise optimal control method, the present method has better optimization effect and shorter whole process time. It is of great significance to the possible emergency rescue mission of manned lunar exploration in the future.


Author(s):  
Shirin Yousefizadeh ◽  
Jan Dimon Bendtsen ◽  
Navid Vafamand ◽  
Mohammad Hassan Khooban ◽  
Tomislav Dragicevic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document