Synchronization of Chaotic Systems with Uncertain Time-Varying Parameters

2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan
2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Jinsheng Xing

The adaptive hybrid function projective synchronization (AHFPS) of different chaotic systems with unknown time-varying parameters is investigated. Based on the Lyapunov stability theory and adaptive bounding technique, the robust adaptive control law and the parameters update law are derived to make the states of two different chaotic systems asymptotically synchronized. In the control strategy, the parameters need not be known throughly if the time-varying parameters are bounded by the product of a known function oftand an unknown constant. In order to avoid the switching in the control signal, a modified robust adaptive synchronization approach with the leakage-like adaptation law is also proposed to guarantee the ultimately uni-formly boundedness (UUB) of synchronization errors. The schemes are successfully applied to the hybrid function projective synchronization between the Chen system and the Lorenz system and between hyperchaotic Chen system and generalized Lorenz system. Moreover, numerical simulation results are presented to verify the effectiveness of the proposed scheme.


2014 ◽  
Vol 4 (4) ◽  
pp. 323-338
Author(s):  
A. M. A. El-Sayed ◽  
◽  
A. Elsaid ◽  
H. M. Nour ◽  
A. Elsonbaty ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 112-128
Author(s):  
Jinsheng Xing

In this paper, an adaptive learning control approach is presented for the hybrid functional projective synchronization (HFPS) of different chaotic systems with fully unknown periodical time-varying parameters. Differential-difference hybrid parametric learning laws and an adaptive learning control law are constructed via the Lyapunov–Krasovskii functional stability theory, which make the states of two different chaotic systems asymptotically synchronized in the sense of mean square norm. Moreover, the boundedness of the parameter estimates are also obtained. The Lorenz system and Chen system are illustrated to show the effectiveness of the hybrid functional projective synchronization scheme.


Sign in / Sign up

Export Citation Format

Share Document