Backstepping Guidance for Missiles Modeled as Uncertain Time-Varying First-Order Systems

Author(s):  
N. Lechevin ◽  
C.A. Rabbath
Author(s):  
Li Wang ◽  
Ziyou Gao ◽  
Lixing Yang

This paper proposes a new definition of uncertain time-varying network to capture the uncertain and dynamic characteristics of the network with discrete uncertain link travel times. To find the a priori non-dominated paths in this type of network, three comparison criteria based on the uncertain measure, namely, deterministic dominance rule, first-order uncertain dominance rule and uncertain expected value dominance rule, are proposed to generate non-dominated paths in a single time interval and a time period, as more than one path may exist between an origin and destination for a given departure time. The proposed comparison methods are then applied to solving a simple uncertain time-varying network. The computational results verify the efficiency of three dominance rules for finding non-dominated paths.


2015 ◽  
Vol 9 (6) ◽  
pp. 568
Author(s):  
Ahmad Al-Jarrah ◽  
Mohammad Ababneh ◽  
Suleiman Bani Hani ◽  
Khalid Al-Widyan

Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


2016 ◽  
Vol 23 (4) ◽  
pp. 319-330
Author(s):  
Jean-Louis Le Mouël ◽  
Vladimir G. Kossobokov ◽  
Frederic Perrier ◽  
Pierre Morat

Abstract. We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.


Sign in / Sign up

Export Citation Format

Share Document