Law of Large Numbers for Random Walk with Unbounded Jumps and Birth and Death Process with Bounded Jumps in Random Environment

2016 ◽  
Vol 31 (2) ◽  
pp. 619-642
Author(s):  
Hua-Ming Wang
2001 ◽  
Vol 38 (4) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Zd. The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


1980 ◽  
Vol 17 (1) ◽  
pp. 259-264 ◽  
Author(s):  
Grant Ritter

By making the time parameters of a birth and death process random variables, we create a continuous-time analogue of random walk in a random environment. Criteria for recurrence or transience are discussed and an a.s. convergence law is determined.


2001 ◽  
Vol 38 (04) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Z d . The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


1980 ◽  
Vol 17 (01) ◽  
pp. 259-264 ◽  
Author(s):  
Grant Ritter

By making the time parameters of a birth and death process random variables, we create a continuous-time analogue of random walk in a random environment. Criteria for recurrence or transience are discussed and an a.s. convergence law is determined.


2017 ◽  
Vol 32 (4) ◽  
pp. 626-639 ◽  
Author(s):  
Zhiyan Shi ◽  
Pingping Zhong ◽  
Yan Fan

In this paper, we give the definition of tree-indexed Markov chains in random environment with countable state space, and then study the realization of Markov chain indexed by a tree in random environment. Finally, we prove the strong law of large numbers and Shannon–McMillan theorem for Markov chains indexed by a Cayley tree in a Markovian environment with countable state space.


1986 ◽  
Vol 38 (2) ◽  
pp. 397-415 ◽  
Author(s):  
Jairo Charris ◽  
Mourad E. H. Ismail

A birth and death process is a stationary Markov process whose states are the nonnegative integers and the transition probabilities(1.1)satisfy(1.2)as t → 0. Here we assume βn > 0, δn + 1 > 0, n = 0, 1, …, but δ0 ≦ 0. Karlin and McGregor [10], [11], [12], showed that each birth and death process gives rise to two sets of orthogonal polynomials. The first is the set of birth and death process polynomials {Qn(x)} generated by


1981 ◽  
Vol 18 (01) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


2019 ◽  
Vol 33 (4) ◽  
pp. 2315-2336
Author(s):  
Inna M. Asymont ◽  
Dmitry Korshunov

Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ ( S n ) n ≥ 0 in $${\mathbb {Z}}^d$$ Z d , $$d\ge 1$$ d ≥ 1 , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ ∑ x ∈ Z d f ( l ( n , x ) ) of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ l ( n , x ) = ∑ i = 0 n I { S i = x } . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ f ( i ) = I { i ≥ 1 } ; $$\alpha $$ α -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ f ( i ) = i α ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ f ( i ) = I { i = j } .


Sign in / Sign up

Export Citation Format

Share Document