Effect of mandrel rotation speed on morphology and mechanical properties of polypropylene pipes produced by rotational shear

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Junjun Wu ◽  
Zexiang Xie ◽  
Hao Yang ◽  
Minghao Yang ◽  
Kaizhi Shen ◽  
...  
2020 ◽  
Vol 38 (12) ◽  
pp. 1392-1402
Author(s):  
Wei-Chen Zhou ◽  
Zu-Chen Du ◽  
Hao Yang ◽  
Jun-Jie Li ◽  
Ying Zhang ◽  
...  

2019 ◽  
Vol 38 (6) ◽  
pp. 653-664 ◽  
Author(s):  
Zu-Chen Du ◽  
Hao Yang ◽  
Xie-Huai Luo ◽  
Ze-Xiang Xie ◽  
Qiang Fu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2004 ◽  
Vol 36 (4) ◽  
pp. 333-349 ◽  
Author(s):  
Bo Yin ◽  
Zhong-Ming Li ◽  
Hui Quan ◽  
Ming-Bo Yang ◽  
Qiu-Ming Zhou ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


Sign in / Sign up

Export Citation Format

Share Document