Graft copolymerization of methyl methacrylate and vinyltriethoxysilane binary monomers onto natural rubber

2021 ◽  
Vol 28 (7) ◽  
Author(s):  
Thuong Nghiem Thi ◽  
Ha Cao Hong ◽  
Yusof Nurul Hayati ◽  
Seiichi Kawahara
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Thi Nhan Nguyen ◽  
Hieu Nguyen Duy ◽  
Dung Tran Anh ◽  
Thuong Nghiem Thi ◽  
Thu Ha Nguyen ◽  
...  

In this study, we investigated the improvement of the thermal and mechanical properties of Vietnam deproteinized natural rubber (DPNR) via graft copolymerization of methyl methacrylate (MMA). The graft copolymerization was achieved successfully in latex stage using tert-butyl hydroperoxide (TBHPO) and tetra-ethylenepentamine (TEPA) as radical initiators at 30°C. By grafting with various MMA feeds and initiator concentration of 6.6×10−5 mol/g-rubber, the highest grafting efficiency and conversion were achieved at MMA of 15 wt.% per kg of rubber, 68% and 90%, respectively. The structure of grafted copolymers was characterized by 1H NMR, FTIR-ATR, and GPC, and thermal properties were investigated through DSC and TGA measurements. These showed that graft copolymers were more stable and rigid than DPNR. Storage modulus (G′) of graft copolymer was found to double that of DPNR, which contributed to the formation of graft copolymer. After sulfur vulcanization, the mechanical properties of DPNR-graft-PMMA, such as tensile strength, tear strength, and hardness, were improved significantly. Curing behaviors of the graft copolymers were found to be remarkably better than virgin DPNR.


Preparation and characterization of natural rubber grafted with methyl methacrylate (MMA) and vinytriethoxysilane (VTES) were performed in the present work. Graft copolymerization of methyl methacryate was carried out in latex stage, and VTES was added during the graft copolymerization of MMA. FTIR and NMR spectroscopy were used to investigate the structure of graft copolymer and determination of conversion and grafting efficiency of MMA. It confirmed that the poly(methyl methacrylate) (PMMA) and silica particles (PVTES) were successfully formed in NR-graft-PMMA-PVTES graft copolymer. Conversions of MMA were about 90-100%; however, MMA grafting efficiency decreased as the MMA concentrations increased. Tensile property of NR-graft-PMMA-PVTES was found to improve compared with that of pure NR.


2006 ◽  
Vol 101 (4) ◽  
pp. 2587-2601 ◽  
Author(s):  
Teeranuch Kochthongrasamee ◽  
Pattarapan Prasassarakich ◽  
Suda Kiatkamjornwong

2010 ◽  
Vol 93-94 ◽  
pp. 39-42
Author(s):  
Sirichai Piyaauksornsak ◽  
Boonchoat Paosawatyanyong ◽  
Napida Hinchiranan

The graft copolymerization is one chemical modification methods to improve natural rubber (NR)’s properties via both solution and latex phases. To enhance the polarity of NR, methyl methacrylate (MMA) was applied for graft copolymerization of NR in the presence of thermal or redox initiators. However, the conventional graft copolymerization generally spends long reaction time (ca. 6-8 h). Due to less energy consumption with faster heating rate, the microwave irradiation was used to induce graft copolmerization of MMA onto NR latex using redox initiation system. By comparing with the conventional grafting method at the same grafting properties, the graft copolymerization of MMA onto NR induced by microwave at 100 W spent the shorter reaction time ca. 15 min; whilst, the conventional method required the longer reaction time as 7 h. The influence of microwave power on the grafting properties was investigated. The structure of graft product was also analyzed by using FTIR and 1H NMR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document