Annual average radon concentration in the show caves of Hungary

2010 ◽  
Vol 287 (2) ◽  
pp. 427-433 ◽  
Author(s):  
J. Somlai ◽  
J. Hakl ◽  
N. Kávási ◽  
G. Szeiler ◽  
P. Szabó ◽  
...  
2005 ◽  
Vol 40 (2-6) ◽  
pp. 686-694 ◽  
Author(s):  
F. Bochicchio ◽  
G. Campos-Venuti ◽  
S. Piermattei ◽  
C. Nuccetelli ◽  
S. Risica ◽  
...  

2020 ◽  
Vol 191 (2) ◽  
pp. 138-143
Author(s):  
G Venoso ◽  
M Ampollini ◽  
S Antignani ◽  
M Caprio ◽  
C Carpentieri ◽  
...  

Abstract Many international and national regulations on radon in workplaces, including the 2013/59/Euratom Council Directive, are based on the annual average of indoor radon concentration, assuming it is representative of the long-term average. However, a single annual radon concentration measurement does not reflect annual variations (i.e. year-to-year variations) of radon concentration in the same location. These variations, if not negligible, should be considered for an optimized implementation of regulations. Unfortunately, studies on annual variations in workplaces can be difficult and time-consuming and no data have been published on scientific journals on this issue. Therefore, we carried out a study to obtain a first evaluation of short-term annual variations in workplaces of a research institute in Rome (Italy). The radon concentration was measured in 120 rooms (mainly offices and laboratories) located in 23 buildings. In each room, two 1-year long measurements were performed, with an interval between the two measurements of up to 3 years. The results show variability between the two 1-year long measurements higher than the variability observed in a sample of dwellings in the same area. Further studies are required to confirm the results and to extend the study to other types of workplaces.


2011 ◽  
Vol 11 (5) ◽  
pp. 1523-1528 ◽  
Author(s):  
A. Gregorič ◽  
A. Zidanšek ◽  
J. Vaupotič

Abstract. Postojna Cave is the largest of 21 show caves in Slovenia. The radon concentration there was measured continuously in the Great Mountain hall from July 2005 to October 2009 and ranged from about 200 Bq m−3 in winter to about 3 kBq m−3 in summer. The observed seasonal pattern of radon concentration is governed by air movement due to the difference in external and internal air densities, controlled mainly by air temperature. The cave behaves as a large chimney and in the cold period, the warmer cave air is released vertically through cracks and fissures to the colder outside atmosphere, enabling the inflow of fresh air with low radon levels. In summer the ventilation is minimal or reversed and the air flows from the higher to the lower openings of the cave. Our calculations have shown that the effect of the difference between outside and cave air temperatures on radon concentration is delayed for four days, presumably because of the distance of the measurement point from the lower entrance (ca. 2 km). A model developed for predicting radon concentration on the basis of outside air temperature has been checked and found to be successful.


Nukleonika ◽  
2016 ◽  
Vol 61 (3) ◽  
pp. 333-336 ◽  
Author(s):  
Amin Shahrokhi ◽  
Erika Nagy ◽  
Anita Csordás ◽  
János Somlai ◽  
Tibor Kovács

Abstract Owing to the high potential of radon to increase the risk of lung cancer, health organizations are enforced to update their regulations and recommendations regarding indoor radon levels each year. In this study, the indoor radon concentrations of three randomly selected thermal baths in Hungary using CR-39 and an AlphaGUARD radon monitor were measured with regard to the new updated standards of the European Basic Safety Standard (EU BSS, Council Directive 2013/59/Euratom, 2014). The annual average of indoor radon concentrations in Parad Medical Bath, Igal Health Spa and Eger Turkish Bath were measured as 159 ± 19, 176 ± 27 and 301 ± 30 Bq/m3, respectively. Indoor radon concentration in all measurement locations were determined to be below the reference level, with the exception of the main pool, small pool and sparkling bath areas in the Eger Turkish Bath that were measured as 403 ± 42, 315 ± 32 and 354 ± 36 Bq/m3, respectively. In light of the results, the estimated annual average radon concentration in the thermal baths was below the EU BSS reference level of 300 Bq/m3. Personal dosimetry is required to estimate the annual effective dose from inhaled radon by the workers at the Eger Turkish Bath. This procedure is required in order to justify the application of the mitigation process of decreasing working hours, improving the ventilation rate or increasing the number of classified employees in response to the official radiation surveillance programme.


Sign in / Sign up

Export Citation Format

Share Document