Separation and determination of 90Sr in low- and intermediate-level radioactive wastes using extraction chromatography and LSC

2011 ◽  
Vol 290 (3) ◽  
pp. 631-635 ◽  
Author(s):  
Eliane S. C. Temba ◽  
Aluísio S. Reis Júnior ◽  
Ângela Maria Amaral ◽  
Roberto P. G. Monteiro
2017 ◽  
Vol 311 (3) ◽  
pp. 1627-1631
Author(s):  
Eliane S. C. Temba ◽  
Geraldo F. Kastner ◽  
Aluísio S. Reis ◽  
Roberto P. G. Monteiro ◽  
Rubens M. Moreira

2006 ◽  
Vol 60 (2) ◽  
Author(s):  
A. Bartošová ◽  
P. Rajec ◽  
A. Klimeková

AbstractThree methods have been used for the determination of 99Tc in soils and solid radioactive wastes using 99mTc as a yield monitor. In the method one and three the samples were leached in low concentrated nitric and sulphuric acid. Many contaminants were then co-precipitated with Fe(OH)3 in alkali media and Tc in the supernatant was separated using anion-exchange extraction chromatography. There were made also some studies how to improve the chemical recovery of 99mTc in the process of chromatography. In the method two the sample was ashed and then leached in 8 mol dm−3 HNO3 and after iron precipitation, technetium was separated on chromatographic column. The chemical recovery of 99mTc was optimized in the process of chromatography and leaching. Typical recoveries of technetium determined with 99mTc tracer for all these methods were in the range 39 %–87 %.The 99Tc activity was measured using proportional low-background beta detector after one week of staying to allow decay of 99mTc activity. 99Tc was also determined by the non-radiometric method using inductively coupled plasma mass spectrometer.


1984 ◽  
Vol 49 (5) ◽  
pp. 1134-1139 ◽  
Author(s):  
Zdeněk Šmejkal ◽  
Jitka Tauferová ◽  
Mária Madová ◽  
Zlatica Teplá

The method describes concentration of mercury in samples of drinking water from water mains with Hg concentration above 1.0 . 10-7 g l-1 (5.0 . 10-10mol l-1) by means of extraction chromatography on a column packed with a carrier Synachrom E-5 wetted with saturated solution of bis(diethyldithiocarbamate)copper(II) complex in 1 : 1 mixture 1,2-dichlorobenzene + cyclohexane. After elution with 3.0 mol l-1 HCl the mercury concentration in the eluate is determined by atomic absorption spectrometry - cold vapour method. Average yield of the mercury separation from the model solutions was 95.8%.


Sensors ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1377 ◽  
Author(s):  
Sylvie Delepine-Lesoille ◽  
Sylvain Girard ◽  
Marcel Landolt ◽  
Johan Bertrand ◽  
Isabelle Planes ◽  
...  

2012 ◽  
Vol 414 ◽  
pp. 624-631 ◽  
Author(s):  
Shuping Yi ◽  
Haiyi Ma ◽  
Chunmiao Zheng ◽  
Xiaobin Zhu ◽  
Hua'an Wang ◽  
...  

1981 ◽  
Vol 6 ◽  
Author(s):  
V. I. Spitsyn ◽  
A. A. Minaev ◽  
L. I. Barsova ◽  
P. Ya. Glazunov ◽  
V. N. Vetchkanov

ABSTRACTThis work is one of the first attempts to work out a proper technique for the determination of the diffusion of the phosphate glass components into various rocks by using X-ray microanalysis. Under study was thermal and radiationenhanced diffusion of phosphorus, chromium from phosphate glasses into the samples of basalt, metagabbro, metadunite and quartz at high temperatures (to 600°) during gamma irradiation. Radiation enhanced diffusion of ions into rocks.


Author(s):  
Makoto Kashiwagi ◽  
Hideki Masui ◽  
Yasutaka Denda ◽  
David James ◽  
Bertrand Lante`s ◽  
...  

Low- and intermediate-level radioactive wastes (L-ILW) generated at nuclear power plants are disposed of in various countries. In the disposal of such wastes, it is required that the radioactivity concentrations of waste packages should be declared with respect to difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63 and α-emitting nuclides, which are often limited to maximum values in disposal licenses, safety cases and/or regulations for maximum radioactive concentrations. To fulfill this requirement, the Scaling Factor method (SF method) has been applied in various countries as a principal method for determining the concentrations of DTM nuclides. In the SF method, the concentrations of DTM nuclides are determined by multiplying the concentrations of certain key nuclides by SF values (the determined ratios of radioactive concentration between DTM nuclides and those key nuclides). The SF values used as conversion factors are determined from the correlation between DTM nuclides and key nuclides such as Co-60. The concentrations of key nuclides are determined by γ ray measurements which can be made comparatively easily from outside the waste package. The SF values are calculated based on the data obtained from the radiochemical analysis of waste samples. The use of SFs, which are empirically based on analytical data, has become established as a widely recognized “de facto standard”. A number of countries have independently collected nuclide data by analysis over many years and each has developed its own SF method, but all the SF methods that have been adopted are similar. The project team for standardization had been organized for establishing this SF method as a “de jure standard” in the international standardization system of the International Organization for Standardization (ISO). The project team for standardization has advanced the standardization through technical studies, based upon each country’s study results and analysis data. The conclusions reached by the project team was published as ISO International Standard 21238:2007 “The Scaling Factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants” [1]. This paper gives an introduction to the international standardization process for the SF method and the contents of the recently published International Standard.


Sign in / Sign up

Export Citation Format

Share Document