scholarly journals Radiological impact assessment of different building material additives

Author(s):  
E. Kocsis ◽  
E. Tóth-Bodrogi ◽  
A. Peka ◽  
M. Adelikhah ◽  
T. Kovács

AbstractIn this study, samples of building material additives were analyzed for naturally occurring radioisotope activity such as uranium, radium, and radon. The radon exhalation and the annual effective doses, were also calculated. The activities of the samples, were determined using HPGe gamma spectrometry and ionization detector. The results were used to calculate dose values by using RESRAD BUILD code. The activity concentration of the samples ranges between 9–494 Bq/kg Ra-226, 1–119 Bq/kg Th-232 and 24–730 Bq/kg K-40. In conclusion the investigated samples can be used safely as building material additives as they do not pose a major risk to humans.

Nukleonika ◽  
2016 ◽  
Vol 61 (3) ◽  
pp. 379-384 ◽  
Author(s):  
Jácint Jónás ◽  
Zoltán Sas ◽  
Janja Vaupotic ◽  
Erika Kocsis ◽  
János Somlai ◽  
...  

Abstract The health risk from thoron (Rn-220) is usually ignored owing to its short half-life (55.6 s), but the generated thoron decay products can cause a significant dose contribution. In this study, altogether 51 Slovenian soil samples were investigated using an accumulation chamber technique to obtain information about thoron exhalation features. The obtained (massic) thoron exhalation results varied between 6.9 and 149 mBq·kg−1·s−1 (average: 55.2 mBq·kg−1·s−1). The Th-232 content was determined using HPGe gamma spectrometry. The Th-232 activity concentration ranged between 9.3 and 161.7 Bq·kg−1 (average: 64.6 Bq·kg−1). The thoron emanation features were also calculated from the obtained results (2.9 to 21.2% with an average of 8.6%). The thoron exhalation and emanation properties were compared with the radon exhalation and emanation features determined in a previous study. It was found that there was no correlation between the radon and thoron emanation features, according to the obtained data. This can be explained by the different Ra-224 and Ra-226 distributions in the soil grains. As a result, the thoron emanation factor cannot be predicted from radon emanation and vice versa.


2018 ◽  
Vol 172 ◽  
pp. 2824-2839 ◽  
Author(s):  
Andrei Goronovski ◽  
P. James Joyce ◽  
Anna Björklund ◽  
Göran Finnveden ◽  
Alan H. Tkaczyk

Nukleonika ◽  
2016 ◽  
Vol 61 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Karol Holý ◽  
Monika Műllerová ◽  
Martin Bulko ◽  
Oľga Holá ◽  
Terézia Melicherová

Abstract Radon activity concentration (RAC) in the outdoor atmosphere was monitored in four localities of Slovakia. The distance between the localities were up to 130 km. The localities had a diverse orography, ranging from flatland to hilly terrain. A significant influence of orography and 226Ra and 222Rn content in soil on diurnal time series of RAC was found. A simple approach of determining radon exhalation rate from soil based on the increase of RAC from daily minima to maxima and removal characteristic of radon is presented. A linear dependency between radon exhalation rate from the soil and RAC in the soil gas at a depth of 0.8 m was found for sandy soils.


2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Xolani Msila ◽  
Frans Labuschagne ◽  
Werner Barnard ◽  
David G. Billing ◽  
◽  
...  

Abstract We evaluated the suitability of phosphogypsum from the Lowveld region of South Africa (LSA), for the manufacturing of building materials, with reference to (1) the National Nuclear Regulator Act 47 of 1999 and (2) the radioactivity associated risks as quantified in terms of the external and internal hazard indices, the activity concentration index and the radium equivalent. The distribution of radioactive nuclides in the LSA phosphogypsum was also examined. Analyses of 19 samples of the phosphogypsum show that phosphogypsum contains lower activity concentrations of naturally occurring radioactive nuclides of uranium and thorium and their progeny than the 500 Bg/kg limit set for regulation in South Africa. The potassium-40 (40K) activity concentration was below the minimum detectable amount of 100 Bq/kg. The values obtained for external and internal hazard indices and the activity concentration index were: 2.12 0.59, 3.44 0.64 and 2.65 0.76 respectively. The calculated radium equivalent Raeq was 513 76Bq/kg. The final decision regarding phosphogypsum’s suitability for use as a building material should consider scenarios of use.


2014 ◽  
Vol 29 (suppl.) ◽  
pp. 1-7 ◽  
Author(s):  
Konstantinos Karfopoulos ◽  
Dimitrios Karangelos ◽  
Marios Anagnostakis ◽  
Simos Simopoulos

The determination of 235U in environmental samples from its 185.72 keV photons may require the deconvolution of the multiplet photopeak at ~186 keV, due to the co-existence of the 186.25 keV photons of 226Ra in the spectrum. Successful deconvolution depends on many parameters, such as the detector characteristics, the activity concentration of the 235U and 226Ra in the sample, the background continuum in the 186 keV energy region and the gamma-spectrometry computer code used. In this work two sets of experimental test spectra were constructed for examining the deconvolution of the multiplet photopeak performed by different codes. For the construction of the test spectra, a high-resolution low energy germanium detector was used. The first series consists of 140 spectra and simulates environmental samples containing various activity concentration levels of 235U and 226Ra. The second series consists of 280 spectra and has been derived by adding 137Cs, corresponding to various activity concentration levels, to specific first series test spectra. As the 137Cs backscatter edge is detected in the energy region of the multiplet photopeak at ~186 keV, this second series of test spectra tests the analysis of the multiplet photopeak in high background continuum conditions. The analysis of the test spectra is performed by two different g-spectrometry analysis codes: (a) spectrum unix analysis code, a computer code developed in-house and (b) analysis of germanium detector spectra, a program freely available from the IAEA. The results obtained by the two programs are compared in terms of photopeak detection and photopeak area determination.


Sign in / Sign up

Export Citation Format

Share Document